Convergence of Level-Wise Convolution Differential Estimators

  • Damien Gonzalez
  • Rémy Malgouyres
  • Henri-Alex Esbelin
  • Chafik Samir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)


Differentials estimation of discrete signals is almost mandatory in digital segmentation. In our previous work, we introduced the fast level-wise convolution (LWC) and its complexity of O(2n.log2(m)). We present convergence proofs of two LWC compatible kernel families. The first one is the pseudo-binomial family, and the second one the pseudo-Gaussian family. In the experimental part, we compare our method to the Digital Straight Segment tangent estimator. Tests are done on different digitized objects at different discretization step using the DGtal library.


Differential estimator discrete differential operator fast convolution sparse differential operator FFT 


  1. 1.
    DGtal: Digital geometry tools and algorithms library,
  2. 2.
    De Vieilleville, F., Lachaud, J.O.: Comparison and improvement of tangent estimators on digital curves. Pattern Recognition 42(8), 1693–1707 (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Esbelin, H., Malgouyres, R., Cartade, C.: Convergence of binomial-based derivative estimation for 2 noisy discretized curves. Theoretical Computer Science 412(36), 4805 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gonzalez, D., Malgouyres, R., Esbelin, H.A., Samir, C.: Fast Level-Wise Convolution. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 223–233. Springer, Heidelberg (2012), CrossRefGoogle Scholar
  5. 5.
    Heideman, M., Johnson, D., Burrus, C.: Gauss and the history of the fast fourier transform. IEEE ASSP Magazine 1(4), 14–21 (1984)CrossRefGoogle Scholar
  6. 6.
    Johnson, S., Frigo, M.: A modified split-radix fft with fewer arithmetic operations. IEEE Transactions on Signal Processing 55(1), 111–119 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  8. 8.
    Lachaud, J., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image and Vision Computing 25(10), 1572–1587 (2007)CrossRefGoogle Scholar
  9. 9.
    Lindeberg, T.: Scale-space theory in computer vision. Springer (1994)Google Scholar
  10. 10.
    Lundy, T., Van Buskirk, J.: A new matrix approach to real ffts and convolutions of length 2 k. Computing 80(1), 23–45 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial Convolutions and Derivatives Estimation from Noisy Discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Damien Gonzalez
    • 1
  • Rémy Malgouyres
    • 1
  • Henri-Alex Esbelin
    • 1
  • Chafik Samir
    • 2
  1. 1.LIMOS UMR 6158 CNRSClermont-UniversitéAubièreFrance
  2. 2.ISIT UMR 6284 CNRSClermont-UniversitéAubièreFrance

Personalised recommendations