Advertisement

Reconstruction of Quantitative Properties from X-Rays

  • Fatma Abdmouleh
  • Mohamed Tajine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

In some applications, the tomographic reconstruction is not an end in itself. When the goal is rather to gather information about the object being studied, the question is if it is more interesting to directly extract these information from the projections without the reconstructing step. We would then know if less projections are needed to directly get the information than to reconstruct the object. In this paper, we address the problem of extracting quantitative information about an object namely an estimation of its area, an upper and a lower bound to the perimeter given its projections from point sources.

References

  1. 1.
    Abdmouleh, F., Daurat, A., Tajine, M.: Discrete Q-Convex Sets Reconstruction from Discrete Point X-Rays. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 321–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Balázs, P., Gara, M.: Decision Trees in Binary Tomography for Supporting the Reconstruction of hv-Convex Connected Images. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 433–443. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Baudrier, É., Tajine, M., Daurat, A.: Convex-Set Perimeter Estimation from Its Two Projections. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 284–297. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Osserman, R.: The isoperimetric inequality. B. Am. Soc. 84, 1182–1238 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Van Dalen, B.: Boundary length of reconstructions in discrete tomography. SIAM J. Discrete Math. 25, 645–659 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Volčič, A.: A three-point solution to Hammer’s X-ray problem. J. London Math. Soc. 34, 349–359 (1986)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fatma Abdmouleh
    • 1
  • Mohamed Tajine
    • 1
  1. 1.LSIIT CNRS UMR 7005Strasbourg UniversityIllkirch-GraffenstadenFrance

Personalised recommendations