Arc Recognition on Irregular Isothetic Grids and Its Application to Reconstruction of Noisy Digital Contours

  • Jean-Luc Toutant
  • Antoine Vacavant
  • Bertrand Kerautret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)


In the present paper, we introduced an arc recognition technique suitable for irregular isothetic object. It is based on the digital inter-pixel (DIP) circle model, a pixel-based representation of the Kovalevsky’s circle. The adaptation to irregular image structurations allows us to apply DIP models for circle recognition in noisy digital contours. More precisely, the noise detector from Kerautret and Lachaud (2009) provides a multi-scale representation of the input contour with boxes of various size. We convert them into an irregular isothetic object and, thanks to the DIP model, reduce the recognition of arcs of circles in this object to a simple problem of point separation.


Arc recognition Irregular isothetic grid Digital circle 


  1. 1.
    Coeurjolly, D., Gerard, Y., Reveillès, J.P., Tougne, L.: An elementary algorithm for digital arc segmentation. Dis. Applied Maths 139(1-3), 31–50 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Coeurjolly, D., Vacavant, A.: Separable Distance Transformation and its Applications. In: Brimkov, V., Barneva, R. (eds.) Digital Geometry Algorithms. Theoretical Foundations and Applications to Computational Imaging. Springer (2012)Google Scholar
  3. 3.
    Damaschke, P.: The linear time recognition of digital arcs. Pat. Rec. Letters 16(5), 543–548 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Computers & Graphics 30(1), 30–36 (2006)CrossRefGoogle Scholar
  5. 5.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Com. of ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  6. 6.
    Kerautret, B., Lachaud, J.-O.: Multi-scale Analysis of Discrete Contours for Unsupervised Noise Detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kerautret, B., Lachaud, J.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Pat. Analysis and Machine Intel. 34(12), 2379–2392 (2012)CrossRefGoogle Scholar
  8. 8.
    Kerautret, B., Lachaud, J.-O., Nguyen, T.P.: Circular Arc Reconstruction of Digital Contours with Chosen Hausdorff Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 247–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: ICPR 1990, vol. 2, pp. 31–34 (1990)Google Scholar
  10. 10.
    Lamiroy, B., Fritz, L., Gaucher, O.: Robust Circle Detection. In: ICDAR 2007, pp. 526–530 (2007)Google Scholar
  11. 11.
    Megiddo, N.: Linear programming in linear time when the dimension is fixed. Jour. of ACM 31(1), 114–127 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nguyen, T.P., Debled-Rennesson, I.: Arc Segmentation in Linear Time. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 84–92. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Nguyen, T.P., Kerautret, B., Debled-Rennesson, I., Lachaud, J.-O.: Unsupervised, Fast and Precise Recognition of Digital Arcs in Noisy Images. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 59–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Pham, S.: Digital circles with non-lattice point centers. The Visual Computer 9, 1–24 (1992)CrossRefGoogle Scholar
  15. 15.
    Ayala-Ramírez, V., Garcia-Capulin, C.H., Pérez-García, A., Sánchez-Yáñez, R.E.: Circle detection on images using genetic algorithms. Pat. Rec. Letters 27(6), 652–657 (2006)CrossRefGoogle Scholar
  16. 16.
    Roussillon, T., Tougne, L., Sivignon, I.: On Three Constrained Versions of the Digital Circular Arc Recognition Problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 34–45. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Vacavant, A., Coeurjolly, D., Tougne, L.: Topological and Geometrical Reconstruction of Complex Objects on Irregular Isothetic Grids. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 470–481. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Vacavant, A., Roussillon, T., Kerautret, B.: Unsupervised Polygonal Reconstruction of Noisy Contours by a Discrete Irregular Approach. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 398–409. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Vacavant, A., Roussillon, T., Kerautret, B., Lachaud, J.-O.: A Combined Multi-Scale/Irregular Algorithm for the Vectorization of Noisy Digital Contours. Computer Vision and Image Understanding (to appear, 2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jean-Luc Toutant
    • 1
    • 2
  • Antoine Vacavant
    • 1
    • 2
  • Bertrand Kerautret
    • 3
  1. 1.ISITClermont Université, Université d’AuvergneClermont-FerrandFrance
  2. 2.CNRS, UMR6284Clermont-FerrandFrance
  3. 3.Université de Nancy, LORIA, UMR7503 CNRSFrance

Personalised recommendations