Advertisement

Integral Based Curvature Estimators in Digital Geometry

  • David Coeurjolly
  • Jacques-Olivier Lachaud
  • Jérémy Levallois
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

In many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field is an essential step. In this paper, we investigate a new class of estimators on digital shape boundaries based on Integral Invariants. More precisely, we provide both proofs of multigrid convergence of curvature estimators and a complete experimental evaluation of their performances.

Keywords

Digital geometry curvature estimation multigrid convergence integral invariants 

References

  1. 1.
    DGtal: Digital geometry tools and algorithms library, http://libdgtal.org
  2. 2.
    Bullard, J.W., Garboczi, E.J., Carter, W.C., Fullet, E.R.: Numerical methods for computing interfacial mean curvature. Computational Materials Science 4, 103–116 (1995)CrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(2), 252–258 (2004)CrossRefGoogle Scholar
  4. 4.
    Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In: Digital Geometry Algorithms, Theoretical Foundations and Applications of Computational Imaging. LNCVB, vol. 2, pp. 395–424. Springer (2012)Google Scholar
  5. 5.
    Esbelin, H.A., Malgouyres, R., Cartade, C.: Convergence of binomial-based derivative estimation for 2 noisy discretized curves. Theoretical Computer Science 412(36), 4805–4813 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fourey, S., Malgouyres, R.: Normals and Curvature Estimation for Digital Surfaces Based on Convolutions. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 287–298. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Guo, J.: On lattice points in large convex bodies. ArXiv e-prints (2010)Google Scholar
  8. 8.
    Huxley, M.N.: Exponential sums and lattice points. Proc. London Math. Soc. 60, 471–502 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Huxley, M.N.: Area, lattice points and exponential sums. Oxford Science Publications (1996)Google Scholar
  10. 10.
    Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. Journal of Mathematical Imaging and Vision 13, 173–191 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Krätzel, E.: Lattice points, vol. 33. Springer (1988)Google Scholar
  12. 12.
    Lachaud, J.O.: Espaces non-euclidiens et analyse d’image: modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à diriger des recherches, Université Bordeaux 1, Talence, France (2006)Google Scholar
  13. 13.
    Lachaud, J.-O., de Vieilleville, F.: Convex Shapes and Convergence Speed of Discrete Tangent Estimators. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 688–697. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. Journal of Mathematical Imaging and Vision 8(2), 131–159 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial Convolutions and Derivatives Estimation from Noisy Discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust geometry processing. Computer Aided Geometric Design 26(1), 37–60 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the integral invariant viewpoint. Computer Aided Geometric Design 24(8-9), 428–442 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Provot, L., Gérard, Y.: Estimation of the Derivatives of a Digital Function with a Convergent Bounded Error. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 284–295. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Roussillon, T., Lachaud, J.-O.: Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 43–55. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. Journal of Mathematical Image and Vision 27(2), 471–502 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Coeurjolly
    • 1
  • Jacques-Olivier Lachaud
    • 2
  • Jérémy Levallois
    • 1
    • 2
  1. 1.CNRS, INSA-Lyon, LIRIS, UMR5205Université de LyonFrance
  2. 2.CNRS, LAMA, UMR5127Université de SavoieFrance

Personalised recommendations