A Study of Monodromy in the Computation of Multidimensional Persistence

  • Andrea Cerri
  • Marc Ethier
  • Patrizio Frosini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)


The computation of multidimensional persistent Betti numbers for a sublevel filtration on a suitable topological space equipped with a ℝ n -valued continuous filtering function can be reduced to the problem of computing persistent Betti numbers for a parameterized family of one-dimensional filtering functions. A notion of continuity for points in persistence diagrams exists over this parameter space excluding a discrete number of so-called singular parameter values. We have identified instances of nontrivial monodromy over loops in nonsingular parameter space. In other words, following cornerpoints of the persistence diagrams along nontrivial loops can result in them switching places. This has an important incidence, e.g., in computer-assisted shape recognition, as we believe that new, improved distances between shape signatures can be defined by considering continuous families of matchings between cornerpoints along paths in nonsingular parameter space. Considering that nonhomotopic paths may yield different matchings will therefore be necessary. In this contribution we will discuss theoretical properties of the monodromy in question and give an example of a filtration in which it can be shown to be nontrivial.


Persistence diagram topological persistence multifiltration shape comparison shape recognition 


  1. 1.
    Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Transactions on Visualization and Computer Graphics 16(6), 1251–1260 (2010)CrossRefGoogle Scholar
  2. 2.
    Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vision 32, 161–179 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 1–87 (2008)CrossRefGoogle Scholar
  4. 4.
    Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes, 1st edn. Springer Publishing Company, Incorporated (2008)Google Scholar
  5. 5.
    Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Amer. Math. Soc. 138, 3003–3017 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Carlsson, G.: Topology and data. Bulletin of the American Mathematical Society 46(2), 255–308 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discr. Comput. Geom. 42(1), 71–93 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Method. Appl. Sci. (in press), doi:10.1002/mma.2704Google Scholar
  9. 9.
    Cerri, A., Ferri, M., Giorgi, D.: Retrieval of trademark images by means of size functions. Graph. Models 68(5), 451–471 (2006)CrossRefGoogle Scholar
  10. 10.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discr. Comput. Geom. 37(1), 103–120 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Di Fabio, B., Landi, C.: Persistent homology and partial similarity of shapes. Pattern Recognition Letters 33, 1445–1450 (2012)CrossRefGoogle Scholar
  12. 12.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2009)Google Scholar
  13. 13.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H., Symonova, O.: The adaptive topology of a digital image. In: 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 41–48 (2012)Google Scholar
  15. 15.
    Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Engrg. Comm. Comput. 12(4), 327–349 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)Google Scholar
  17. 17.
    Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  18. 18.
    Zheng, Y., Gu, S., Edelsbrunner, H., Tomasi, C., Benfey, P.: Detailed reconstruction of 3D plant root shape. In: Metaxas, D.N., Quan, L., Sanfeliu, A., Gool, L.J.V. (eds.) ICCV. pp. 2026–2033. IEEE (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea Cerri
    • 1
    • 4
  • Marc Ethier
    • 2
  • Patrizio Frosini
    • 3
    • 4
  1. 1.IMATI – CNRGenovaItalia
  2. 2.Département de mathématiquesUniversité de SherbrookeSherbrookeCanada
  3. 3.Dipartimento di MatematicaUniversità di BolognaItalia
  4. 4.ARCESUniversità di BolognaItalia

Personalised recommendations