Advertisement

Optimal Register Allocation in Polynomial Time

  • Philipp Klaus Krause
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7791)

Abstract

A graph-coloring register allocator that optimally allocates registers for structured programs in polynomial time is presented. It can handle register aliasing. The assignment of registers is optimal with respect to spill and rematerialization costs, register preferences and coalescing. The register allocator is not restricted to programs in SSA form or chordal interference graphs. It assumes the number of registers is to be fixed and requires the input program to be structured, which is automatically true for many programming languages and for others, such as C, is equivalent to a bound on the number of goto labels per function. Non-structured programs can be handled at the cost of either a loss of optimality or an increase in runtime. This is the first optimal approach that has polynomial runtime and works for such a huge class of programs.

An implementation is already the default register allocator in most backends of a mainstream cross-compiler for embedded systems.

Keywords

register allocation tree-decomposition structured program 

References

  1. 1.
  2. 2.
    Guidelines for the Use of the C Language in Critical Systems (MISRA-C:2004, 2nd Edition). Technical report, MISRA (2008)Google Scholar
  3. 3.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal of Computation 25(6), 1305–1317 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Gustedt, J., Telle, J.A.: Linear-Time Register Allocation for a Fixed Number of Registers. In: SODA 1998: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 574–583. Society for Industrial and Applied Mathematics (1998)Google Scholar
  5. 5.
    Bouchez, F., Darte, A., Rastello, F.: On the Complexity of Register Coalescing. In: Proceedings of the International Symposium on Code Generation and Optimization, CGO 2007, pp. 102–114. IEEE Computer Society (2007)Google Scholar
  6. 6.
    Burgstaller, B., Blieberger, J., Scholz, B.: On the Tree Width of Ada Programs. In: Llamosí, A., Strohmeier, A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 78–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Chaitin, G.J.: Register allocation & spilling via graph coloring. In: SIGPLAN 1982: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, pp. 98–105. Association for Computing Machinery (1982)Google Scholar
  8. 8.
    Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.: Register allocation via coloring. Computer Languages 6, 47–57 (1981)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theoretical Computer Science 172(1-2), 233–254 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operating System for Tiny Networked Sensors. In: Proceedings of the First IEEE Workshop on Embedded Networked Sensors (Emnets-I) (November 2004)Google Scholar
  12. 12.
    Dutta, S.: Anatomy of a Compiler. Circuit Cellar 121, 30–35 (2000)Google Scholar
  13. 13.
    Evlogimenos, A.: Improvements to Linear Scan register allocation, Technical report, University of Illinois, Urbana-Champaign (2004)Google Scholar
  14. 14.
    Farach, M., Liberatore, V.: On local register allocation. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1998, pp. 564–573. Society for Industrial and Applied Mathematics (1998)Google Scholar
  15. 15.
    Fu, C., Wilken, K.: A Faster Optimal Register Allocator. In: MICRO 35: Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture, pp. 245–256. IEEE Computer Society Press (2002)Google Scholar
  16. 16.
    Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The Complexity of Coloring Circular Arcs and Chords. SIAM Journal on Algebraic Discrete Methods 1(2), 216–227 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Goodwin, D.W., Wilken, K.D.: Optimal and near-optimal global register allocations using 0–1 integer programming. Software Practice & Experience 26(8), 929–965 (1996)CrossRefGoogle Scholar
  18. 18.
    Guruswami, V., Sinop, A.K.: Improved Inapproximability Results for Maximum k-Colorable Subgraph. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 163–176. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Gustedt, J., Mæhle, O.A., Telle, J.A.: The Treewidth of Java Programs. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 86–97. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Hack, S., Grund, D., Goos, G.: Register Allocation for Programs in SSA-Form. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 247–262. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Halin, R.: Zur Klassifikation der endlichen Graphen nach H. Hadwiger und K. Wagner. Mathematische Annalen 172(1), 46–78 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hames, L., Scholz, B.: Nearly Optimal Register Allocation with PBQP. In: Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 346–361. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Kannan, S., Proebsting, T.: Register Allocation in Structured Programs. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995, pp. 360–368. Society for Industrial and Applied Mathematics (1995)Google Scholar
  24. 24.
    Karp, R.M.: On the Computational Complexity of Combinatorial Problems. Networks 5, 45–68 (1975)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Krause, P.K.: The Complexity of Register Allocation. To appear in the GROW 2011 special issue of Discrete Applied Mathematics (2011)Google Scholar
  26. 26.
    Lee, J.K., Palsberg, J., Pereira, F.M.Q.: Aliased register allocation for straight-line programs is NP-complete. Theoretical Computer Science 407(1-3), 258–273 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Pereira, F.M.Q.: Register Allocation Via Coloring of Chordal Graphs. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 315–329. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Poletto, M., Sarkar, V.: Linear scan register allocation. ACM Transactions on Programming Languages and Systems (TOPLAS) 21(5), 895–913 (1999)CrossRefGoogle Scholar
  29. 29.
    Robertson, N., Seymour, P.D.: Graph Minors. I. Excluding a Forest. Journal of Combinatorial Theory, Series B 35(1), 39–61 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Scholz, B., Eckstein, E.: Register Allocation for Irregular Architectures. SIGPLAN Notices 37(7), 139–148 (2002)CrossRefGoogle Scholar
  31. 31.
    Smith, M.D., Ramsey, N., Holloway, G.: A Generalized Algorithm for Graph-Coloring Register Allocation. In: PLDI 2004: Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation, pp. 277–288. Association for Computing Machinery (2004)Google Scholar
  32. 32.
    Thorup, M.: All Structured Programs Have Small Tree Width and Good Register Allocation. Information and Computation 142(2), 159–181 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Communications of the ACM 27, 1013–1030 (1984)CrossRefGoogle Scholar
  34. 34.
    Weicker, R.P.: Dhrystone Benchmark: Rationale for Version 2 and Measurement Rules. SIGPLAN Notices 23, 49–62 (1988)CrossRefGoogle Scholar
  35. 35.
    Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philipp Klaus Krause
    • 1
  1. 1.Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations