Skip to main content

Nutrient Use Efficiency

  • Chapter
  • First Online:
Genomics and Breeding for Climate-Resilient Crops

Abstract

Much of the recent gains in global crop production have been underpinned by greater use of fertilizer, especially nitrogen and phosphorus, and continued improvements in plant nutrition will be needed to meet the increasing demands for food and fiber from a growing world population. Climate change presents many challenges to improvements in nutrient use efficiency by its direct effects on the growth and yield of plants, and hence on nutrient demand, and by its influence on soil nutrient cycling, nutrient availability, and uptake. However, the consequences of climate change on plant nutrition are difficult to predict because of the complexity of the soil–plant–atmosphere system. Empirical data suggests that enhanced as well as reduced nutrient availability and uptake may occur as a result of climate change, depending on the nutrient in question and the component of the climate that changes. Notwithstanding the uncertainty of the effects of climate change on soil nutrient availability and plant nutrient uptake, improvements in nutrient use efficiency will be required to sustain productivity into the future.

Over significant areas of the world’s arable land, high inputs of nutrients have increased soil nutrient reserves and fertilizer use efficiency is low, while in other regions, impoverished soils and low rates of fertilizer use have limited the capacity of farmers to provide adequate amounts of nutritious food. Developing varieties with enhanced nutrient use efficiency provides a way of improving productivity in both situations, although the traits that are targeted may differ. The two pathways by which nutrient use efficiency can be improved are by better uptake efficiency or by enhanced utilization efficiency. The relative importance of these strategies will reflect the amount and availability of nutrients in the soil. Genetic variation in nutrient use efficiency in plants is well documented, but improvements in nutrient use efficiency in the major food crops so far have been modest. Reasons why progress has been limited include inconsistent and sometimes confusing definitions of nutrient use efficiency, incomplete understanding of the genetic and physiological bases of differences in nutrient use efficiency, lack of field validation of assays, and little consideration of genotype × environment interactions in the expression of nutrient use efficiency. However, currently a powerful array of molecular and genomic techniques promises considerable advances in understanding nutrient use efficiency and developing varieties that are more nutrient efficient. Combined with traditional disciplines of plant breeding, crop physiology, and agronomy, new opportunities are developing to study genetic differences in nutrient use efficiency and to allow agriculture to meet the challenges of increased production of quality grain in a variable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhunov E (2011) Next-generation tools for wheat genetics and breeding: high-throughput SNP genotyping assays and sequence-based genotyping. In: Dreisigacker S, Singh S (eds) 21st international Triticeae mapping initiative workshop, Mexico City, Mexico, 50 p

    Google Scholar 

  • Alexander A, Helm HU (1990) Ureaform as a slow release fertilizer - a review. Z Pflanzenernaehr Bodenk 153:249–255

    Article  CAS  Google Scholar 

  • Ameziane R, Bernhard K, Lightfoot DA (2000) Expression of the bacterial gdhA encoding glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 221:47–57

    Article  CAS  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  PubMed  CAS  Google Scholar 

  • An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T, Ezawa T (2010) How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasm. Plant Soil 327:441–453

    Article  CAS  Google Scholar 

  • Andrade FH, Sala RG, Pontaroli AC, León A (2009) Integration of biotechology, plant breeding and crop physiology: dealing with complex interactions from a physiological perspective. In: Sadras VO, Calderini DF (eds) Crop physiology. Applications for genetic improvement and agronomy. Academic, San Diego, CA, pp 267–276

    Google Scholar 

  • Andreson LC, Michelson A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–396

    Article  CAS  Google Scholar 

  • Andrews M, Lea P, Raven J, Lindsey K (2004) Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency? An assessment. Ann Appl Biol 145:25–35

    Article  CAS  Google Scholar 

  • Asseng S, Ritchie JT, Smucker AJM, Robertson MJ (1998) Root growth and water uptake during water deficit and recovering in wheat. Plant Soil 201:265–273

    Article  CAS  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a MicroRNA399 target gene. Plant Physiol Biochem 141:1000–1011

    Article  CAS  Google Scholar 

  • Babu R, Nair SK, Prasanna BM, Gupta HS (2004) Integrating marker-assisted selection in crop breeding - prospects and challenges. Curr Sci 87:607–619

    CAS  Google Scholar 

  • Baldani JL, Reis VM, Baldani VLD, Dobereiner J (2002) A brief story of nitrogen fixation in sugarcane-reasons for success in Brazil. Funct Plant Biol 29:417–423

    Article  Google Scholar 

  • Baldock JA, Wheeler I, McKenzie N, McBrateny A (2012) Soils and climate change: potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture. Crop Pasture Sci 63:269–283

    Article  CAS  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Balint T, Rengel Z (2009) Differential sulfur efficiency in canola genotypes at vegetative and grain maturity stage. Crop Pasture Sci 60:262–270

    Article  CAS  Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2006) Breeding for improved abiotic stress tolerance in maize adapted to southern Africa. Agric Water Manag 80:212–224

    Article  Google Scholar 

  • Baon J, Smith S, Alston A (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157:97–105

    Google Scholar 

  • Barber SA, Mackay AD (1985) Sensitivity analysis of the parameters of a mechanistic mathematical model affected by changing soil moisture. Agron J 77:528–531

    Article  Google Scholar 

  • Barrow NJ, Shaw TC (1975) The slow reactions between soil and anions: 2. Effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Sci 119:167–177

    Article  CAS  Google Scholar 

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • Batten GD, Fettell NA, Mead JA, Khan MA (1993) Sowing date and phosphorus utilisation by wheat. Plant Soil 155(156):197–300

    Google Scholar 

  • Batten GD, Fettell NA, Mead JA, Khan MA (1999) Effect of sowing date on the uptake and utilisation of phosphorus by wheat (cv Osprey) grown in central New South Wales. Aust J Exp Agric 39:161–170

    Article  Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    Article  CAS  Google Scholar 

  • Bijay-Singh (2011) The nitrogen cycle: implications for management, soil health and climate change. In: Singh BP, Cowie AL, Chan KY (eds) Soil health and climate change, vol 29. Springer, Berlin, pp 107–129

    Chapter  Google Scholar 

  • Blair G (1993) Nutrient efficiency - what do we really mean? In: Randall PJ, Delhaize E, Richards RA, Munns R (eds) Genetic aspects of plant mineral nutrition. Kluwer Academic, Dordrecht, pp 205–213

    Chapter  Google Scholar 

  • Brouder SM, Volenec JJ (2008) Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant 133:705–724

    Article  PubMed  CAS  Google Scholar 

  • Buljovcic Z, Engels C (2001) Nitrate uptake ability by maize roots during and after drought stress. Plant Soil 229:125–135

    Article  CAS  Google Scholar 

  • Burkholder JM, Noga EJ, Hobbs CH, Glasgow HB Jr (1992) New ‘phantom’ dinoflagellate is the causative agent of major estuarine fish kills. Nat Aust 358:407–410

    Article  CAS  Google Scholar 

  • Cabello P, Roldan MD, Moreno-Vivián C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2000) Tansley Review No. 111. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  Google Scholar 

  • Cakmak I, Braun H-J (2001) Genotypic variation for zinc efficiency. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Applications of physiology in wheat breeding. CIMMYT, Mexico DF, pp 183–199

    Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photo-oxidative damage. Physiol Plant 133:692–704

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Tolay I, Ozkan H, Ozdemir A, Braun HJ (1999) Variation in zinc efficiency among and within Aegilops species. J Plant Nutr Soil Sci 162:257–262

    Article  CAS  Google Scholar 

  • Cañas RA, Quilleré I, Christ A, Hirel B (2009) Nitrogen metabolism in the developing ear of maize (Zea mays): analysis of two lines contrasting in their mode of nitrogen management. New Phytol 184:340–352

    Article  PubMed  CAS  Google Scholar 

  • Cañas RA, Quilleré I, Lea PJ, Hirel B (2010) Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs. Plant Biotechnol J 8:966–978

    Article  PubMed  CAS  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  PubMed  CAS  Google Scholar 

  • Cavagnaro TR, Gleadow RM, Miller RE (2011) Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct Plant Biol 38:87–96

    Article  CAS  Google Scholar 

  • Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol 147:20–29

    Article  PubMed  CAS  Google Scholar 

  • Cherfas J (1990) The fringe of the ocean - under siege from land. Science 248:163–165

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Lu XC, Haefele SM, Gamuyao R, Ismail A, Wissuwa M, Heuer S (2010) Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1. Theor Appl Genet 120:1073–1086

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156:1202–1216

    Article  PubMed  CAS  Google Scholar 

  • Cianzio S (1999) Breeding crops for improve nutrient use efficiency: soybean and wheat as case studies. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Haworth, Binghamton, NY, pp 227–265

    Google Scholar 

  • Cichy KA, Blair MW, Galeano Mendoza CH, Snapp SS, Kelly JD (2009) QTL analysis or root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:49–68

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  PubMed  CAS  Google Scholar 

  • Conroy JP (1992) Influence of elevated atmospheric CO2 concentrations on plant nutrition. Aust J Bot 40:445–456

    CAS  Google Scholar 

  • Cook AC, Tissue DT, Roberts SW, Oechel WC (1998) Effects of long-term elevated [CO2] from springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant Cell Environ 221:417–425

    Article  Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9. doi: 10.1186/1471-2229-8-9

    Article  PubMed  CAS  Google Scholar 

  • Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet 117:729–747

    Article  PubMed  CAS  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19:292–305

    Article  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    Article  PubMed  CAS  Google Scholar 

  • Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr Opin Plant Biol 4:247–253

    Article  PubMed  CAS  Google Scholar 

  • Coudert Y, Périn C, Courtois B, Khong NG, Gantet P (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  PubMed  CAS  Google Scholar 

  • Crasswell ET, Godwin DC (1984) The efficiency of nitrogen fertilizers applied to cereals grown in different climates. In: Tinker PB, Lauchli A (eds) Advances in plant nutrition, vol 1. Praeger, New York, pp 1–55

    Google Scholar 

  • David MB, Gentry LE, Kovacic DA, S KM (1997) Nitrogen balance in and export from an agricultural watershed. J Environ Quart 26:1038–1048

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Taylor P, Hocking PJ, Simpson RJ, Ryan PR, Richardson AE (2009) Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Plant Biotechnol J 7:391–400

    Article  PubMed  CAS  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  • Dunham RJ, Nye PH (1976) The influence of water content on the uptake of ions by roots. III. Phosphate, potassium, calcium, and magnesium uptake and concentration gradients in soil. J Appl Ecol 13:967–984

    Article  CAS  Google Scholar 

  • Duval BD, Blankinship JC, Dijkstra P, Hungate BA (2012) CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecol 213:505–521

    Article  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Edmonds DE, Abreu SL, West A, Caasi DR, Conley TO, Daft MC, Desta B, England BB, Farris CD, Nobles TJ, Patel NK, Rounds EW, Sanders BH, Shawaqfeh SS, Lokuralalage L, Manandhar R, Raun WR (2009) Cereal nitrogen use efficiency in sub Saharan Africa. J Plant Nutr 32:2107–2122

    Article  CAS  Google Scholar 

  • Edwards EJ, McCafferty S, Evans JR (2005) Phosphorus status determines biomass response to elevated CO2 in a legume:C4 grass community. Glob Change Biol 11:1968–1981

    Google Scholar 

  • Erbs M, Manderscheid R, Jansen G, Seddig S, Pacholski A, Weigel HJ (2010) Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric Ecosyst Environ 136:59–68

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:185–268

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in the twenty first century. J Plant Nutr 31:1121–1157

    Article  CAS  Google Scholar 

  • Fangmeier A, Grüters U, Högy P, Vermehren B, Jäger HJ (1997) Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat—II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ Pollut 96:43–59

    Article  PubMed  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker assisted selection in crop plants. Plant Cell Tiss Org Cult 82:317–342

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98:177–182

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 334:123–136

    Article  CAS  Google Scholar 

  • Garcia-Teijeiro R, Lightfoot DA, Hernandez JD (2009) Effect of a chemical modified urea fertilizer on soil quality: soil microbial populations around corn roots. Commun Soil Sci Plant Anal 40:2152–2168

    Article  CAS  Google Scholar 

  • Genc Y, McDonald GK (2008) Domesticated emmer wheat (T. turgidum L. subsp dicoccon (Schrank) Thell.) as a source for improvement of zinc efficiency in durum wheat. Plant Soil 310:67–75

    Article  CAS  Google Scholar 

  • Gentile R, Dodd M, Lieffering M, Brock SC, Theobald PW, Newton PCD (2012) Effects of long-term exposure to enriched CO2 on the nutrient-supplying capacity of a grassland soil. Biol Fertil Soils 48:357–362

    Article  CAS  Google Scholar 

  • George TS, Richardson AE (2008) Potential and limitations to improving crops for enhanced phosphorus utilization. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, vol 7. Springer, Amsterdam, pp 247–270

    Chapter  Google Scholar 

  • George T, Brown L, Newton A, Hallett P, Sun B, Thomas W, White PJ (2011) Impact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum vulgare L.). Plant Soil 339:113–123

    Article  CAS  Google Scholar 

  • Godon C, Krapp A, Leydecker MT, DanielVedele F, Caboche M (1996) Methylammonium resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport. Mol Gen Genet 250:357–366

    PubMed  CAS  Google Scholar 

  • Goldman BS, Darveaux B, Cleveland J, Abad MS, Mahmood S (2009) Genes and uses for plant improvement. US Patent Application 2009/0,070,897

    Google Scholar 

  • Gomez-Becerra HF, Yazici A, Ozturk L, Budak H, Peleg Z, Morgounov A, Fahima T, Saranga Y, Cakmak I (2010) Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica 171:39–52

    Article  CAS  Google Scholar 

  • Good AE, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    Article  CAS  Google Scholar 

  • Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient use efficiency - a comparison of definitions and suggested improvement. Plant Soil 158:29–37

    Article  CAS  Google Scholar 

  • Grab S, Craparo A (2011) Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agric For Meteorol 151:406–413

    Article  Google Scholar 

  • Graham RD (1984) Breeding for nutritional characteristics in cereals. Adv Plant Nutr 1:57–102

    Google Scholar 

  • Graham RD, Nambiar EKS (1981) Advances in research on copper deficiency in cereals. Aust J Agric Res 32:1009–1037

    CAS  Google Scholar 

  • Graham RD, Rengel Z (1993) Genotypic variation in zinc uptake and utilization by plants. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic, Dordrecht, pp 107–118

    Chapter  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Graham RD, Knez M, Welch RM (2012) How much nutritional iron deficiency in humans globally is due to an underlying zinc deficiency? Adv Agron 115:1–40

    Article  CAS  Google Scholar 

  • Grewal HS, Stangoulis JCR, Potter TD, Graham RD (1997) Zinc efficiency of oilseed rape (Brassica napus and B-juncea) genotypes. Plant Soil 191:123–132

    Article  CAS  Google Scholar 

  • Gupta R, Liu J, Dhugga KS, Simmons CR (2011) Manipulation of ammonium transporters (AMTs) to improve nitrogen use efficiency in higher plants. US Patent Application 13/043,109

    Google Scholar 

  • Hacisalihoglu G, Ozturk L, Cakmak I, Welch RM, Kochian L (2004) Genotypic variation in common bean in response to zinc deficiency in calcareous soil. Plant Soil 259:71–83

    Article  CAS  Google Scholar 

  • Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968

    Article  PubMed  CAS  Google Scholar 

  • Handmer J, Honda Y, Kundzewicz ZW, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B, Takahashi K, Yan Z (2012) Changes in impacts of climate extremes: human systems and ecosystems. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, pp 231–290

    Google Scholar 

  • Harrigan GG, Ridley WP, Miller KD, Sorbet R, Riordan SG, Nemeth MA, Reeves W, Pester TA (2009) The forage and grain of MON 87460, a drought-tolerant corn hybrid, are compositionally equivalent to that of conventional corn. J Agric Food Chem 57:9754–9763

    Article  PubMed  CAS  Google Scholar 

  • Hayman P, Crean J, Predo C (2011) A systems approach to climate risk in rainfed farming systems. In: Tow P, Cooper I, Partridge I, Birch C (eds) Rainfed farming systems. Springer Science + Business Media B.V, New York, NY, pp 75–100

    Chapter  Google Scholar 

  • Hemon P, Robbins MP, Cullimore JV (1990) Targeting of glutamine-synthetase to the mitochondria of transgenic tobacco. Plant Mol Biol 15:895–904

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hou XL, Wu P, Jiao FC, Jia QJ, Chen HM, Yu J, Song XW, Yi KK (2005) Regulation of the expression of OsIPS1 and OsIPS2 in rice via systemic and local Pi signalling and hormones Plant. Cell Environ 28:353–364

    Article  CAS  Google Scholar 

  • Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C (2011) LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol Biochem 156:1101–1115

    Article  CAS  Google Scholar 

  • Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang M, Huang W, Mueller LA, Bhattacharyya D, Bhaya D, Sobral BW, Beavis W, Meinke DW, Town CD, Somerville C, Rhee SY (2001) The Arabidopsis information resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102–105

    Article  PubMed  CAS  Google Scholar 

  • Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to diseases. In: Rengal Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Haworth, Binghamton, NY, pp 169–204

    Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158

    Article  CAS  Google Scholar 

  • Indrasumunar A, Searle I, Lin M-H, Kereszt A, Men A, Carroll BJ, Gresshoff PM (2011) Nodulation factor receptor kinase 1a controls nodule organ number in soybean (Glycine max L. Merr). Plant J 65:39–50

    Article  PubMed  CAS  Google Scholar 

  • Indrasumunar A, Kereszt A, Gresshoff PM (2012) Soybean nodulation factor receptor proteins, encoding nucleic acids and uses thereof. US Patent Application 2011/0,231,952

    Google Scholar 

  • IPCC (2007) In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 976 p

    Google Scholar 

  • Jahns T, Kaltwasser H (2000) Mechanism of microbial degradation of slow release fertilizers. J Polym Environ 8:11–16

    Article  Google Scholar 

  • Jahns T, Schepp R, Kaltwasser H (1997) Purification and characterization of an enzyme from a strain of Ochrobactrum anthropi that degrades condensation products of urea and formaldehyde (ureaform). Can J Microbiol 43:1111–1117

    Article  CAS  Google Scholar 

  • Jahns T, Schepp R, Siersdorfer C, Kaltwasser H (1999) Biodegradation of slow-release fertilizers (methyleneureas) in soil. J Environ Polym Degrad 7:75–82

    Article  CAS  Google Scholar 

  • Jakobsen I, Chen B, Munkvold L, Lundsgaard T, Zhu Y-G (2005) Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairless barley mutant. Plant Cell Environ 28:928–938

    Article  CAS  Google Scholar 

  • Jarvis A, Ramirez J, Anderson B, Leibing C, Aggarwal P (2010) Scenarios of climate change within the context of agriculture. In: Reynolds MP (ed) Climate change and crop production. CABI, Wallingford, pp 9–37

    Chapter  Google Scholar 

  • Jennings G (2004) New varieties target specific needs Farming Ahead (Kondinin Group) 55: 41-42

    Google Scholar 

  • Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol Biochem 156:1164–1175

    Article  CAS  Google Scholar 

  • Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol 150:272–280

    Article  PubMed  CAS  Google Scholar 

  • Jones GPD, Blair GJ, Jessop RS (1989) Phosphorus efficiency in wheat – a useful selection criterion? Field Crops Res 21:257–264

    Article  Google Scholar 

  • Jones C, McConnell C, Coleman K, Cox P, Falloon P, Jenkinson D, Powlson D (2005) Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob Change Biol 11:155–166

    Article  Google Scholar 

  • Jupp AP, Newman EI (1987) Phosphorus uptake from soil by Lolium perenne during and after severe drought. J Appl Ecol 24:979–990

    Article  CAS  Google Scholar 

  • Kaiser BN, Finnegan PM, Tyerman SD, Whitehead LF, Bergersen FJ, Day DA, Udvardi MK (1998) Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science 281:1202–1206

    Article  PubMed  CAS  Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1823

    Article  PubMed  CAS  Google Scholar 

  • Khoshgoftarmanesh AH, Schulin R, Chaney RL, Daneshbakhsh B, Afyuni M (2011) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. In: Lichtfouse E, Hamelin M, Navarrete M, Debaeke P (eds) Sustainable agriculture, vol 2. Springer Science + Business Media, Amsterdam, pp 219–249

    Google Scholar 

  • Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F (2005) Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.). Plant Cell Physiol 46:964–974

    Article  PubMed  CAS  Google Scholar 

  • Kichey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois F, Le Gouis J, Hirel B (2006) Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytol 169:265–278

    Article  PubMed  CAS  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Kirkby EA, Johnston AE (2008) Soil and fertilizer phosphorus in relation to crop nutrition. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions, vol 7. Springer, Dordrecht, pp 177–223

    Chapter  Google Scholar 

  • Kishii M, Delgado R, Rosas V, Cortes A, Cano S, Sanchez J, Mujeeb-Kazi A (2008) Exploitation of genetic resources through wide crosses In: Reynolds MP, Pietragalla J, Braun H-J (eds) International symposium on wheat yield potential: challenges to international wheat breeding, Mexico DF, pp 120–125

    Google Scholar 

  • Kleinhofs A, Kuo T, Warner RL (1980) Characterization of nitrate reductase-deficient barley mutants. Mol Gen Genet 177:421–425

    Article  CAS  Google Scholar 

  • Koivunen M, Horwarth WR (2004) Effect of management history and temperature on the mineralization of methylene urea in soil. Nutr Cycl Agroecosyst 68:25–35

    Article  CAS  Google Scholar 

  • Koivunen ME, Horwath WR (2004) Effect of management history and temperature on the mineralization of methylene urea in soil. Nutr Cycl Agroecosyst 68:25–35

    Article  CAS  Google Scholar 

  • Koivunen M, Morisseau C, Horwarth WR, Hammock BD (2004a) Isolation of a strain of Agrobacterium tumefaciens (Rhizobium radiobacter) utilizing methylene urea (ureaformaldehyde) as nitrogen source. Can J Microbiol/Rev Can Microbiol 50:167–174

    Article  CAS  Google Scholar 

  • Koivunen ME, Morisseau C, Horwath WR, Hammock BD (2004b) Isolation of a strain of Agrobacterium tumefaciens (Rhizobium radiobacter) utilizing methylene urea (ureaformaldehyde) as nitrogen source. Can J Microbiol 50:167–174

    Article  PubMed  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay Y-F (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2011) Soil health and climate change: an overview. In: Singh BP, Cowie AL, Chan KY (eds) Soil health and climate change, vol 29. Springer, Berlin, pp 3–24

    Chapter  Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Chalmers K (2005) The principle: identification and application of molecular markers. In: Lorz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement, vol 55. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  • Lea PJ, Miflin BJ (2011) Nitrogen metabolism in plants in the post-genomic era. In: Foyer C, Zhang H (eds) Annual plant reviews, vol 42, Nitrogen assimilation and its relevance to crop improvement. Wiley Blackwell, New Delhi, pp 1–40

    Google Scholar 

  • Lee LK, Nielsen EG (1987) The extent and costs of groundwater contamination by agriculture. J Soil Water Conserv 42:243–248

    Google Scholar 

  • Li T, Di Z, Han X (2012) Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii. Plant Soil 354:325–334

    Article  CAS  Google Scholar 

  • Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959–970

    Article  CAS  Google Scholar 

  • Liao M, Hocking PJ, Dong B, Delhaize E, Richardson AE, Ryan PR (2008) Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils. Aust J Agric Res 59:157–166

    Article  CAS  Google Scholar 

  • Lightfoot DA (2008) Blue revolution brings risks and rewards. Science 321:771–772

    Article  PubMed  CAS  Google Scholar 

  • Lightfoot DA (2009) Genes for use in improving nitrate use efficiency in crops. In: Woods AJ, Jenks MA (eds) Genes for plant abiotic stress. Wiley-Blackwell, New York, NY, pp 167–182

    Chapter  Google Scholar 

  • Lightfoot DA, Fakhoury A (2010) Methods of using plants containing the gdhA gene: aflatoxin reduction and fungal root rot resistance Patent pending 2012/708,174

    Google Scholar 

  • Lightfoot DA, Long LM, Vidal ME (2001) Plants containing the gdhA gene and methods of use thereof. US Patent # 6,329,573

    Google Scholar 

  • Lightfoot DA, Mungur R, Ameziane R, Nolte S, Long L, Bernhard K, Colter A, Jones K, Iqbal MJ, Varsa E, Young B (2007) Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica 156:103–116

    Article  CAS  Google Scholar 

  • Limami A, Phillipson B, Ameziane R, Pernollet N, Jiang QJ, Poy R, Deleens E, Chaumont-Bonnet M, Gresshoff PM, Hirel B (1999) Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta 209:495–502

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wang ZY, Ren HY, Shen CJ, Li Y, Ling HQ, Wu CY, Lian XM, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62:508–517

    Article  PubMed  CAS  Google Scholar 

  • Lobell D, Burke M (2010) Economic impacts of climate change on agriculture to 2030. In: Reynolds MP (ed) Climate change and crop production. CABI, Wallingford, pp 38–49

    Chapter  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739

    Article  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP, St. Clair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res 90:101–115

    Article  Google Scholar 

  • Mackay AD, Barber SA (1985) Soil moisture effect on potassium uptake by corn. Agron J 77:524–527

    Article  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, van Ginkel M, Gonzalez M, Rajaram R, Molina E, Vlek PLG (2001) Importance of P uptake efficiency versus P utilization for wheat yield in acid and calcareous soils in Mexico. Eur J Agron 14:261–274

    Article  CAS  Google Scholar 

  • Manske GGB, Ortiz-Monasterio JI, van Ginkel RM, Rajaram S, Vlek PLG (2002) Phosphorus use efficiency in tall, semi-dwarf and dwarf near-isogenic lines of spring wheat. Euphytica 125:113–119

    Article  CAS  Google Scholar 

  • Marcar NE, Graham RD (1987) Genotypic variation for manganese efficiency in wheat. J Plant Nutr 10:2049–2055

    Article  CAS  Google Scholar 

  • Maredia MK, Byerlee D, Pee P (2000) Impacts of food crop improvement research: evidence from sub-Saharan Africa. Food Policy 25:531–559

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, 889 p

    Google Scholar 

  • McClean PE, Burridge J, Beebe S, Rao IM, Porch TG (2011) Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris). Funct Plant Biol 38:927–933

    Article  Google Scholar 

  • McDonald GK, Graham RD, Lloyd J, Lewis J, Lonergan P, Khabas-Saberi H (2001) Breeding for improved zinc and manganese efficiency in wheat and barley. In: Rowe B, Donaghy D, Mendham N (eds) Science and technology: delivering results for agriculture? Proceedings of the 10th Australian agronomy conference, Hobart, Tasmania. http://regional.org.au/au/asa/2001/6/a/mcdonald.htm. Accessed July 2012

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer Academic, Dordrecht, 849 p

    Book  Google Scholar 

  • Messina C, Hammer G, Dong Z, Podlich D, Cooper M (2009) Modelling crop improvement in a GxExM framework via gene-trait-phenotype relationships. In: Sadras VO, Calderini DF (eds) Crop physiology. Applications for genetic improvement and agronomy. Academic, San Diego, CA, pp 235–265

    Google Scholar 

  • Meyer R (1997) A genetic analysis of response to ammonium and methylammonium in Arabidopsis thaliana. MSc thesis, Southern Illinois University College, Carbondale, 118p

    Google Scholar 

  • Meyer R, Yuan J, Afzal J, Iqbal MJ, Zhu M, Garvey G, Lightfoot DA (2006) Identification of Gsr1 in Arabidopsis thaliana: a locus inferred to regulate gene expression in response to exogenous glutamine. Euphytica 151:291–302

    Article  CAS  Google Scholar 

  • Mirvish SS (1985) Gastric-cancer and salivary nitrate and nitrite. Nature 315:461–462

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  PubMed  CAS  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Moller H, Landt J, Pedersen E, Jensen P, Autrup H, Jensen OM (1989) Endogenous nitrosation in relation to nitrate exposure from drinking water and diet in a Danish rural population. Cancer Res 49:3117–3121

    PubMed  CAS  Google Scholar 

  • Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Mungur R, Glass ADM, Goodenow DB, Lightfoot DA (2005) Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J Biomed Biotechnol 2005(2):198–214

    Article  PubMed  CAS  Google Scholar 

  • Mungur R, Wood AJ, Lightfoot DA (2006) Water potential is maintained during water deficit in Nicotiana tabacum expressing the Escherichia coli glutamate dehydrogenase gene. Plant Growth Regul 50:231–238

    Article  CAS  Google Scholar 

  • Nagarajan VK, Jain A, Poling MD, Lewis AJ, Raghothama KG, Smith AP (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol Biochem 156:1149–1163

    Article  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  PubMed  CAS  Google Scholar 

  • Nilsson L, Muller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512

    Article  PubMed  CAS  Google Scholar 

  • Nolte SA (2009) Metabolic analysis of resistance to glufosinate in gdhA transgenic tobacco. PhD thesis, Southern Illinois University, Carbondale, 244 p

    Google Scholar 

  • Nolte SA, Young BG, Mungur R, Lightfoot DA (2004) The glutamate dehydrogenase gene gdhA increased the resistance of tobacco to glufosinate. Weed Res 44:335–339

    Article  CAS  Google Scholar 

  • Nord EA, Lynch JP (2008) Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability. Plant Cell Environ 31:1432–1441

    Article  PubMed  CAS  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • Nord EA, Shea K, Lynch JP (2011) Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants. Ann Bot 108:391–404

    Article  PubMed  Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    Article  CAS  Google Scholar 

  • Ogbonnaya F, Ye G, Trethowan R, Dreccer F, Lush D, Shepperd J, van Ginkel M (2007) Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157:321–336

    Article  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Article  Google Scholar 

  • Ortega JL, Moguel-Esponda S, Potenza C, Conklin CF, Quintana A, Sengupta-Gopalan C (2006) The 3′ untranslated region of a soybean cytosolic glutamine synthetase (GS(1)) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J 45:832–846

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Monasterio JI, Sayre KD, Rajaram S, McMahon M (1997) Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci 37:898–904

    Article  Google Scholar 

  • Ortiz-Monasterio JI, Manske GGB, van Ginkel M (2001) Nitrogen and phosphorus use efficiency. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Applications of physiology in wheat breeding. CIMMYT, Mexico DF, pp 200–207

    Google Scholar 

  • Osborne LD, Rengel Z (2002) Growth and P uptake by wheat genotypes supplied with phytate as the only P source. Aust J Agric Res 53:845–850

    Article  CAS  Google Scholar 

  • Ott C, Rechberger H (2012) The European phosphorus balance. Resour Conserv Recycl 60:159–172

    Article  Google Scholar 

  • Ozturk L, Eker S, Torun B, Cakmak I (2005) Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant and Soil 269:69–80

    Article  CAS  Google Scholar 

  • Pariasca-Tanaka J, Satoh K, Rose T, Mauleon R, Wissuwa M (2009) Stress response versus stress tolerance: a transcriptome analysis of two rice lines contrasting in tolerance to phosphorus deficiency. Rice 2:167–185

    Article  Google Scholar 

  • Patil RH, Laegdsmand M, Olesen JE, Porter JR (2010) Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agric Ecosyst Environ 139:195–205

    Article  CAS  Google Scholar 

  • Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    Article  CAS  Google Scholar 

  • Peck AW, McDonald GK, Graham RD (2008) Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). J Cereal Sci 47:266–274

    Article  CAS  Google Scholar 

  • Pennisi E (2008) Plant genetics: the blue revolution, drop by drop, gene by gene. Science 320:171–173

    Article  PubMed  CAS  Google Scholar 

  • Péret B, Clément M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  PubMed  CAS  Google Scholar 

  • Pleijel H, Danielsson H (2009) Yield dilution of grain Zn in wheat grown in open-top chamber experiments with elevated CO2 and O3 exposure. J Cereal Sci 50:278–282

    Article  CAS  Google Scholar 

  • Pleijel H, Uddling J (2012) Yield vs. quality trade-offs for wheat in response to carbon dioxide and ozone. Glob Change Biol 18:596–605

    Article  Google Scholar 

  • Poorter H (1998) Do slow-growing species and nutrient stressed plants respond relatively strongly to elevated CO2? Glob Change Biol 4:681–697

    Article  Google Scholar 

  • Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang X (2011) Observed soil temperature trends associated with climate change in Canada. J Geophys Res 116:D02106

    Article  Google Scholar 

  • Rae AL, Jarmey JM, Mudge SR, Smith FW (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rates. Funct Plant Biol 31:141–148

    Article  CAS  Google Scholar 

  • Reddy KR, Hodges HF (2000) Climate change and global crop productivity. CABI, Wallingford, 472 p

    Book  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z (1999) Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Haworth, Binghamton, NY, pp 227–265

    Google Scholar 

  • Rengel Z (2011) Soil pH, soil health and climate change. In: Singh BP, Cowie AL, Chan KY (eds) Soil health and climate change, vol 29. Springer, Berlin, pp 69–85

    Chapter  Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plant 133:624–636

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  PubMed  CAS  Google Scholar 

  • Renkow M, Byerlee D (2010) The impacts of CGIAR research: a review of recent evidence. Food Policy 35:391–402

    Article  Google Scholar 

  • Reynolds MP (ed) (2010) Climate change and crop production. CAB International, Wallingford, 310p

    Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009a) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009b) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rodriguez de Cianzio SR (1991) Recent advances in breeding for improving iron utilization by plants. Plant Soil 130:63–68

    Article  CAS  Google Scholar 

  • Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus use efficiency: a new approach is needed to improve PUE in grain crops. Adv Agron 116:185–217

    Article  CAS  Google Scholar 

  • Rubio G, Liao H, Yan XL, Lynch JP (2003) Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43:598–607

    Article  Google Scholar 

  • Sadras VO (2005) A quantitative top-down view of interactions between stresses: theory and analysis of nitrogen–water co-limitation in Mediterranean agro-ecosystems. Aust J Agric Sci 56:1151–1157

    Article  Google Scholar 

  • Sadras VO, Monzon JP (2006) Modelling wheat phenology captures rising temperature trends: shortened time to flowering and maturity in Australia and Argentina. Field Crops Res 99:136–146

    Article  Google Scholar 

  • Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture. CSIRO, Canberra, 80 p

    Google Scholar 

  • Saxena MC, Malhotra RS, Singh KB (1990) Iron deficiency in chickpea in the Mediterranean region and its control through resistant genotypes and nutrient application. Plant Soil 123:251–254

    Article  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PHD, Richardson AE, Smith FW, Delhaize E (2004) Characterization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

    Article  PubMed  CAS  Google Scholar 

  • Schuster I (2011) Marker-assisted selection for quantitative traits. Crop Breed Appl Biotechnol Suppl 1:50–55

    Article  Google Scholar 

  • Seebauer JR, Moose SP, Fabbri BJ, Crossland LD, Below FE (2004) Amino acid metabolism in maize earshoots. Implications for assimilate preconditioning and nitrogen signaling. Plant Physiol 136:4326–4334

    Article  PubMed  CAS  Google Scholar 

  • Seebauer JR, Singletary GW, Krumpelman PM, Ruffo ML, Below FE (2010) Relationship of source and sink in determining kernel composition of maize. J Exp Bot 61:511–519

    Article  PubMed  CAS  Google Scholar 

  • Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins, structures and biosynthesis. Plant Cell Environ 7:945–956

    CAS  Google Scholar 

  • Shrawat AK, Carroll RT, De Pauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Purcell LC, King CA, Sneller CH, Chen P, Vadez V (2007) Drought tolerance and yield increase of soybean resulting from improved symbiotic N-2 fixation. Field Crops Res 101:68–71

    Article  Google Scholar 

  • Singh BR, Subramaniam V (1997) Phosphorus supplying capacity of heavily fertilized soils. II. Dry matter yield of successive crops and phosphorus uptake at different temperatures. Nutr Cycl Agroecosyst 47:123–134

    Article  Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential - a genetic and physiological perspective. Crop Sci 39:1560–1570

    Article  Google Scholar 

  • St. Clair SB, Lynch JP (2010) The opening of Pandora’s box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335:101–115

    Article  CAS  Google Scholar 

  • Stangoulis JCR, Grewal HS, Bell RW, Graham RD (2000) Boron efficiency in oilseed rape: I. Genotypic variation demonstrated in field and pot grown Brassica napus L. and Brassica juncea L. Plant Soil 225:243–251

    Article  CAS  Google Scholar 

  • Steenbjerg F, Jakobsen ST (1963) Plant nutrition and yield. Soil Sci 95:69–90

    Article  Google Scholar 

  • Su J, Xiao Y, Li M, Liu Q, Li B, Tong Y, Jia J, Li Z (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36

    Article  CAS  Google Scholar 

  • Su JY, Zheng Q, Li HW, Li B, Jing RL, Tong YP, Li ZS (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • Szarejko I, Janiak A, Chmilelwska B, Nawrot M (2005) Genetic analysis of several root hair mutants of barley. Barley Genet Newsl 35:36–38

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum SR, Fett D, Young VR, Land PD, Bruce WR (1978) Nitrate and nitrite are formed by endogenous synthesis in human intestine. Science 200:1487–1489

    Article  PubMed  CAS  Google Scholar 

  • Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Glob Change Biol 14:565–575

    Article  Google Scholar 

  • Terce-Laforgue T, Dubois F, Ferrario-Mery S, de Crecenzo MAP, Sangwan R, Hirel B (2004a) Glutamate dehydrogenase of tobacco is mainly induced in the cytosol of phloem companion cells when ammonia is provided either externally or released during photorespiration. Plant Physiol 136:4308–4317

    Article  PubMed  CAS  Google Scholar 

  • Terce-Laforgue T, Mack G, Hirel B (2004b) New insights towards the function of glutamate dehydrogenase revealed during source-sink transition of tobacco (Nicotiana tabacum) plants grown under different nitrogen regimes. Physiol Plant 120:220–228

    Article  PubMed  CAS  Google Scholar 

  • Torun B, Kalayci M, Ozturk L, Torun A, Aydin M, Cakmak I (2002) Differences in shoot boron concentrations, leaf symptoms, and yield of Turkish barley cultivars grown on boron-toxic soil in field. J Plant Nutr 26:1735–1747

    Article  CAS  Google Scholar 

  • Trenkel ME (1997) Improving fertilizer use efficiency. Controlled release and stabilised fertilisers in agriculture. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Valentine V, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress. In: Foyer C, Zhang H (eds) Nitrogen metabolism in plants in the post-genomic era, vol 42. Wiley Blackwell, New Delhi, pp 207–248

    Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutierrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:4477–4482

    Article  PubMed  CAS  Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520

    Article  PubMed  CAS  Google Scholar 

  • von Wiren N, Gazzarrini S, Gojon A, Frommer WB (2000) The molecular physiology of ammonium uptake and retrieval. Curr Opin Plant Biol 3:254–261

    Google Scholar 

  • Walters DR, Bingham IJ (2007) Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann Appl Biol 151:307–324

    Article  CAS  Google Scholar 

  • Wang RC, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    PubMed  CAS  Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilisation, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Weaver DM, Wong MTF (2011) Scope to improve phosphorus (P) management and balance efficiency of crop and pasture soils with contrasting P status and buffering indices. Plant Soil 349:37–54

    Article  CAS  Google Scholar 

  • Webb LB, Whetton PH, Bhend J, Darbyshire R, Briggs PR, Barlow EWR (2012) Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat Clim Change 2:259–264

    Article  Google Scholar 

  • Weir AH, Barraclough PB (1986) The effect of drought on the root growth of winter wheat and on its water uptake from a deep loam. Soil Use Manage 2:91–96

    Article  Google Scholar 

  • Wenqi M, Jianhu IL, Lin M, Fanghao W, Sisak I, Cushman G, Fusuo Z (2009) Nitrogen flow and use efficiency in production and utilisation of wheat, rice and maize in China. Agric Syst 99:53–63

    Google Scholar 

  • Wenqi M, Li M, Jianhui L, Fanghao W, Sisak I, Fusuo Z (2011) Phosphorus balance and use efficiencies in production and consumption of wheat, rice and maize in China. Chemosphere 84:814–821

    Article  CAS  Google Scholar 

  • Wiersma JV (2010) Nitrate induced iron deficiency in soybean varieties with varying iron-stress responses. Agron J 102:1738–1744

    Article  Google Scholar 

  • Wieser H, Manderscheid R, Erbs M, Weigel HJ (2008) Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J Agric Food Chem 56:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783

    Article  CAS  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    Article  CAS  Google Scholar 

  • Wu DX, Wang GX, Bai YF, Liao JX (2004) Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ 104:493–507

    Article  Google Scholar 

  • Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol Biochem 157:498–508

    Article  CAS  Google Scholar 

  • Yan X, Wu P, Ling H, Xu G, Xu F, Zhang Q (2006) Plant nutriomics in China: an overview. Ann Bot 98:473–482

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type IH+-pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111

    Article  CAS  Google Scholar 

  • Yau SK, Ryan J (2008) Boron toxicity tolerance in crops: a viable alternative to soil amelioration. Crop Sci 48:854–865

    Article  CAS  Google Scholar 

  • Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322

    Article  CAS  Google Scholar 

  • Zhao Y, Li W, Zhou ZH, Wang LH, Pan YJ, Zhao LP (2005) Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. Eur J Soil Biol 41:21–29

    Article  CAS  Google Scholar 

  • Zhou J, Jiao FC, Wu ZC, Li YY, Wang XM, He XW, Zhong WQ, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol Biochem 146:1673–1686

    Article  CAS  Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDonald, G., Bovill, W., Huang, C., Lightfoot, D. (2013). Nutrient Use Efficiency. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37048-9_10

Download citation

Publish with us

Policies and ethics