Skip to main content

Participatory Breeding for Climate Change-Related Traits

  • Chapter
  • First Online:
Genomics and Breeding for Climate-Resilient Crops

Abstract

After a review of the effects of climate changes on food security and agricultural production, the chapter relates modern plant breeding, as opposed to farmers’ breeding practiced for millennia, with the decrease of agrobiodiversity. It underlines the contradiction between the unanimous recognition of the importance of biodiversity and the tendency towards uniformity of modern plant breeding, which, combined with the increased consolidation of the seed industry, is causing a dramatic decrease of cultivated biodiversity. This is exactly the opposite of what is required to adapt crops to climate changes. Although a suite of traits play an important role in the adaptation of crops to climate changes, it is also important to recognize that climate changes are a moving target and therefore the emphasis should not be so much on which trait to breed for but rather to adopt breeding strategies that allow a highly dynamic and efficient system of variety deployment in farmers’ fields. Participatory plant breeding, whose technical aspects are described in detail, has the capability of increasing agricultural production at farm level by exploiting specific adaptation, thus increasing at the same time agrobiodiversity. Participatory plant breeding, integrated with evolutionary plant breeding, should become the model of plant breeding used by the plant breeding programs of the CGIAR centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CGIAR is the new brand name of the Consultative Group of International Agricultural Research Center.

References

  • Abay F, Bjørnstad A (2009) Specific adaptation of barley varieties in different locations in Ethiopia. Euphytica 167:181–195

    Article  Google Scholar 

  • Addo-Bediako A, Chown S, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Aguilar L (2009) Training manual on gender and climate change. IUCN and UNDP. http://cmsdata.iucn.org/downloads/eng_version_web_final_1.pdf

  • Allen LH Jr, Boote KJ, Jones JW, Jones PH, Valle RR, Acock B, Rogers HH, Dahlman RC (1987) Response of vegetation to rising carbon dioxide: photosynthesis, biomass, and seed yield of soybean. Glob Biogeochem Cycles 1:1–14

    Article  CAS  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview, Boulder, CO

    Google Scholar 

  • Altieri MA, Koohafkan P (2003) Enduring farms: climate change, smallholders and traditional farming communities. Third World Network, Penang, 72 p

    Google Scholar 

  • Annicchiarico P, Bellah F, Chiari T (2005) Defining subregions and estimating benefits for a specific adaptation strategy by breeding programs: a case study. Crop Sci 45:1741–1749

    Article  Google Scholar 

  • Annicchiarico P, Bellah F, Chiari T (2006) Repeatable genotype x location interaction and its exploitation by conventional and GIS-based cultivar recommendation for durum wheat in Algeria. Eur J Agron 24:70–81

    Article  Google Scholar 

  • Ashby JA, Lilja N (2004) Participatory research: does it work? Evidence from participatory plant breeding. New directions for a diverse planet. In: Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 Sept–1 Oct 2004. http://www.cropscience.org.au

    Google Scholar 

  • Atkinson MD, Kettlewell PS, Poulton PR, Hollins PD (2008) Grain quality in the Broadbalk Wheat Experiment and the winter North Atlantic Oscillation. J Agric Sci 146:541–549

    Article  Google Scholar 

  • Aw-Hassan A, Mazid A, Salahieh H (2008) The role of informal farmer-to-farmer seed distribution in diffusion of new barley varieties in Syria. Exp Agric 44(03):413–431

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 p

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ x H. spontaneum 41 1. Theor Appl Genet 107:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Beerling DJ (2007) The emerald planet: how plants changed earth’s history. Oxford University Press, Oxford, 288 p

    Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  PubMed  CAS  Google Scholar 

  • Bellon MR (2006) Crop research to benefit poor farmers in marginal areas of the developing world: a review of technical challenges and tools. CAB Rev 1(70):11. http://www.bioversityinternational.org/fileadmin/bioversity/news/documents/Bellon.pdf

  • Bishaw Z, van Gastel AJG (2009) Variety release and policy options. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 565–587

    Google Scholar 

  • Bou-Zeid E, El-Fadel M (2002) Climate change and water resources in Lebanon and the Middle East. J Water Resour Plann Manag 128:343–355

    Article  Google Scholar 

  • Brown ME, Funk CC (2008) Food security under climate change. Science 319:580–581

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli S (1989) Wide adaptation. How wide? Euphytica 40:197–205

    Google Scholar 

  • Ceccarelli S (1996) Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity. In: Cooper M, Hammers GL (eds) Plant adaptation and crop improvement. CAB International/ICRISAT/IRRI, Wallingford/Hyderabad/Manila, pp 467–486

    Google Scholar 

  • Ceccarelli S (2009a) Evolution, plant breeding and biodiversity. J Agric Environ Int Dev 103:131–145

    Google Scholar 

  • Ceccarelli S (2009a) Main stages of a plant breeding programme. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 63–74

    Google Scholar 

  • Ceccarelli S (2009b) Selection methods. Part 1: Organizational aspects of a plant breeding programme. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 63–74

    Google Scholar 

  • Ceccarelli S (2012a) Landraces: importance and use in breeding and environmentally friendly agronomic systems. In: Maxted N, Ehsan Dulloo M, Ford-Lloyd BV, Frese L, Iriondo J, Pinheiro de Carvalho MAA (eds) Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces. CAB International, Wallingford, Oxon, pp 103–117

    Google Scholar 

  • Ceccarelli S (2012b) Plant breeding with farmers – a technical manual. ICARDA, Aleppo, xi+126 p

    Google Scholar 

  • Ceccarelli S, Grando S (1997) Increasing the efficiency of breeding through farmer participation. In: Ethics and equity in conservation and use of genetic resources for sustainable food security. Proceedings of a workshop to develop guidelines for the CGIAR, Foz de Iguacu, Brazil, 21-25 Apr 1997. IPGRI, Rome, pp 116–121

    Google Scholar 

  • Ceccarelli S, Grando S (2000) Barley landraces from the Fertile Crescent: a lesson for plant breeders. In: Brush SB (ed) Genes in the field: on-farm conservation of crop diversity. IPGRI/IDRC/Lewis, Rome/Ottawa/Boca Raton, FL, pp 51–76

    Google Scholar 

  • Ceccarelli S, Grando S (2002) Plant breeding with farmers requires testing the assumptions of conventional plant breeding: lessons from the ICARDA barley program. In: Cleveland DA, Soleri D (eds) Farmers, scientists and plant breeding: integrating knowledge and practice. CAB International, Wallingford, Oxon, pp 297–332

    Chapter  Google Scholar 

  • Ceccarelli S, Grando S (2007) Decentralized participatory plant breeding: an example of demand driven research. Euphytica 155:349–360

    Article  Google Scholar 

  • Ceccarelli S, Valkoun J, Erskine W, Weigand S, Miller R, Van Leur J (1992) Plant genetic resources and plant improvement as tools to develop sustainable agriculture. Exp Agric 28:89–98

    Article  Google Scholar 

  • Ceccarelli S, Erskine W, Grando S, Hamblin J (1994) Genotype x environment interaction and international breeding programmes. Exp Agric 30:177–187

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Tutwiler R, Baha J, Martini AM, Salahieh H, Goodchild A, Michael M (2000) A methodological study on participatory barley breeding. I. Selection phase. Euphytica 111:91–104

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Amri A, Asaad FA, Benbelkacem A, Harrabi M, Maatougui M, Mekni MS, Mimoun H, El Einen RA, Mel F, El Sayed AF, Shreidi AS, Yahyaoui A (2001) Decentralized and participatory plant breeding for marginal environments. In: Cooper D, Hodgink T, Spillane C (eds) Broadening the genetic base of crop production. CAB International, Wallingford, Oxon, pp 115–135

    Chapter  Google Scholar 

  • Ceccarelli S, Grando S, Singh M, Michael M, Shikho A, Al Issa M, Al Saleh A, Kaleonjy G, Al Ghanem SM, Al Hasan AL, Dalla H, Basha S, Basha T (2003) A methodological study on participatory barley breeding. II. Response to selection. Euphytica 133:185–200

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. In: Rao SC, Ryan J (eds) Challenges and strategies for dryland agriculture. CSSA Spl Publ 32. ASA and CSSA, Madison, WI, pp 167–190

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environment. Exp Agric 43:1–25

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A, Labdi M, Mimoun H, Nachit M (2010) Plant breeding and climate changes. J Agric Sci 148:627–638

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Winge T (2013) Participatory barley breeding in Syria. In: Andersen R, Winge T (eds) Realizing farmers’ rights to crop genetic resources: success stories and best practices. Earthscan, Abingdon

    Google Scholar 

  • Cheikh N, Miller PW, Kishore G (2000) Role of biotechnology in crop productivity in a changing environment. In: Reddy KR, Hodges HF (eds) Global change and crop productivity. CAB International, Wallingford, Oxon, pp 425–436

    Chapter  Google Scholar 

  • Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  PubMed  CAS  Google Scholar 

  • Cline WR (2007) Global warming and agriculture: impact estimates by country. Peterson Institute for International Economics, Washington, DC, 250 p

    Google Scholar 

  • Conway GR (1997) The doubly green revolution. Penguin, London, 360 p

    Google Scholar 

  • Cooper M, Stucker RE, DeLacy IH, Harch BD (1997) Wheat breeding nurseries, target environments, and indirect selection for grain yield. Crop Sci 37:1168–1176

    Article  Google Scholar 

  • Cornwall A (2003) Whose voices? Whose choices? Reflections on gender and participatory development. World Dev 31:1325–1342

    Article  Google Scholar 

  • Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145

    Article  Google Scholar 

  • De Schutter O (2009) Seed policies and the right to food: enhancing agrobiodiversity and encouraging innovation. The United Nations, New York, NY

    Google Scholar 

  • De Schutter O (2011) Report on the right to food. UN Human Rights Council. http://rs.resalliance.org/?p=4612

  • Denevan WM (1995) Prehistoric agricultural methods as models for sustainability. Adv Plant Pathol 11:21–43

    Article  Google Scholar 

  • Desclaux D, Ceccarelli S, Navazio J, Coley M, Trouche G, Aguirre S, Weltzien E, Lançon J (2011) Centralized or decentralized breeding: the potentials of participatory approaches for low-input and organic agriculture, Chap 6. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley-Blackwell, Hoboken, NJ, pp 99–123

    Google Scholar 

  • Di Falco S, Chavas JP (2006) Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture. Eur Rev Agric Econ 33:289–314

    Article  Google Scholar 

  • Dixon J, Nalley L, Kosina P, La Rovere R, Hellin J, Aquino P (2006) Adoption and economic impact of improved wheat varieties in the developing world. J Agric Sci 144:489–502

    Article  Google Scholar 

  • Drennen PM, Smith M, Goldsworthy D, Van Staten J (1993) The occurrence of trehalose in the leaves of the desiccation tolerant angiosperm Myronthamnus flabellifoliius Welw. J Plant Physiol 142:493–496

    Article  Google Scholar 

  • Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458

    Article  PubMed  CAS  Google Scholar 

  • Engledow FL (1925) The economic possibilities of plant breeding. In: Brooks FT (ed) Report of the proceedings of the imperial botanical conference. Cambridge University Press, Cambridge, pp 31–40

    Google Scholar 

  • Evans LT (2005) The changing context for agricultural science. J Agric Sci 143:7–10

    Article  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, 2nd edn. Longmann Group, London

    Google Scholar 

  • FAO (2011) The state of food and agriculture 2010–2011 (SOFA): 16–17. FAO, Rome. http://www.fao.org/docrep/013/i2050e/i2050e.pdf

    Google Scholar 

  • FAO, IFAD, WFP (2012) Facts and figures: rural women and the millennium development goals. http://www.un.org/womenwatch/feature/ruralwomen/facts-figures

    Google Scholar 

  • Farnworth CR, Jiggins J (2003) Participatory plant breeding and gender analysis (PPB Monographs). CGIAR System wide Program on Participatory Research and Gender Analysis (PRGA), Cali, 116 p

    Google Scholar 

  • Fehr WR (ed) (1984) Genetic contributions to yield gains of five major crop plants. CSSA Spl Publ No 7. ASA and CSSA, Madison, WI, USA

    Google Scholar 

  • Flora C (2001) Interactions between agroecosystems and rural communities. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Foley JA (2011) Can we feed the world and sustain the planet? Sci Am 305:60–65

    Article  PubMed  Google Scholar 

  • Fuglie KO, Heisey PW, King JL, Pray CE, Day-Rubenstein K, Schimmelpfennig D, Wang SL, Karmarkar-Deshmukh R (2011) Research investments and market structure in the food processing, agricultural input, and biofuel industries worldwide. ERR-130. USDA Economic Research Services, Washington, DC

    Google Scholar 

  • Galiè A (2013a) Empowering women farmers: the case of participatory plant breeding in ten Syrian households. Frontiers 34:1

    Article  Google Scholar 

  • Galiè A (2013b) Governance of seed and food security through participatory plant breeding: empirical evidence and gender analysis from Syria. Nat Resour Forum (forthcoming)

    Google Scholar 

  • Galiè (2013c) The empowerment of women farmers in the context of participatory plant breeding in Syria: towards equitable development for food security. Wageningen thesis. Wageningen University.

    Google Scholar 

  • Galiè A, Jiggins J, Struik P (2012) Women’s identity as farmers: a case study from ten households in Syria. Wageningen J Life Sci. doi:10.1016/j.njas.2012.10.001

    Google Scholar 

  • Gaut B (2012) Arabidopsis thaliana as a model for the genetics of local adaptation. Nat Genet 44:115–116

    Article  PubMed  CAS  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishment and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  • Gepts P, Hancock J (2006) The future of plant breeding. Crop Sci 46:1630–1634

    Article  Google Scholar 

  • Giles J (2007) How to survive a warming world. Nature 446:716–717

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9(8):e1001124. doi:10.1371/journal.pbio.1001124

    Article  PubMed  CAS  Google Scholar 

  • Grando S, Von Bothmer R, Ceccarelli S (2001) Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In: Cooper HD, Spillane C, Hodgink T (eds) Broadening the genetic base of crop production. CABI/FAO/IPRI, New York/Rome, pp 351–372

    Google Scholar 

  • Gray JE, Holroyd GH, Van Der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signaling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  PubMed  CAS  Google Scholar 

  • Guijt I, Shah MK (eds) (2006) The myth of community: gender issues in participatory development. Intermediate Technology Publishers, Warwickshire

    Google Scholar 

  • Harlan JR, De Wet JMJ, Price EG (1973) Comparative evolution in cereals. Evolution 27:311–325

    Article  Google Scholar 

  • Hayes HK (1923) Controlling experimental error in nursery trials. J Am Soc Agron 15:177–192

    Article  Google Scholar 

  • Howard PL (2003) Women and plants. Gender relations in biodiversity management and conservation. ZED, London

    Google Scholar 

  • Humphreys MO (2005) Genetic improvement of forage crops – past, present and future. J Agric Sci 143:441–448

    Article  Google Scholar 

  • IAASTD (2009) Agriculture at a crossroads. International Assessment of Agricultural Knowledge, Science, and Technology for Development. Sub-global report for Central and West Asia and North Africa (CWANA). The Island Press, Washington, DC. http://www.agassessment.org

  • Interdrought-II (2005) 2nd International conference on integrated approaches to sustain and improve plant production under drought stress. Conference conclusions and recommendations. Rome, Italy, 24–28 Sept 2005. http://www.plantstress.com/ID2/ID2-Report.pdf. Accessed 18 Dec 2008

  • IPCC (Intergovernmental Panel on Climate Change) (2007) The physical science basis: summary for policymakers. IPCC Secretariat, Geneva

    Google Scholar 

  • Jahaiah A (2002) Hybrid rice for Indian farmers: myths and realities. Econ Pol Wkly 37:4319–4328

    Google Scholar 

  • Jiggins J (2011) Science review SR: 48, Gender in the food system. Foresight Project. The Government Office for Science, London. http://www.bis.gov.uk/assets/foresight/docs/food-and-farming/science/11-585-sr48-gender-in-the-food-system.pdf

  • Kempton RA, Gleeson A (1997) Unreplicated trials. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 86–100

    Chapter  Google Scholar 

  • Keneni G, Bekele E, Imtiaz M, Dagne K (2012) Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. Int J Plant Res 2:69–79

    Article  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Kishor PBK, Hong Z, Miao G, Hu C, Verma D (1995) Overexpression of Δ1-pyrroline-5-carboxylase synthase increases praline production and confers osmotolerance in transgenic plants. J Plant Physiol 108:1387–1394

    CAS  Google Scholar 

  • Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S (2011) The potential contribution of wild barley (Hordeum vulgare spp. spontaneum) germplasm to drought resistance of cultivated barley (Hordeum vulgare spp. vulgare). Field Crops Res 120:161–168

    Article  Google Scholar 

  • Lakew B, Henry RJ, Ceccarelli S, Grando S, Eglinton J, Baum M (2013) Genetic analysis and phenotypic association for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica 189:9–29

    Article  CAS  Google Scholar 

  • Leakey ABD, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140:779–790

    Article  PubMed  CAS  Google Scholar 

  • Lilja N, Aw-Hassan A (2003) Benefits and costs of participatory barley breeding in Syria. In: A background paper to a poster presented at the 25th international conference of IAAE, Durban, South Africa, 16–22 Aug 2003

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Mendum R, Glenna LL (2010) Social factors underlying participatory plant breeding and agricultural biodiversity. Sustainability 2:73–91

    Article  Google Scholar 

  • Min S-K, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381

    Article  PubMed  CAS  Google Scholar 

  • Ming X (2009) World wide fund for nature: Yangtze river basin climate change vulnerability and adaptation report. WWF-China Program Office, Beijing, 14 p

    Google Scholar 

  • Miskin KE, Rasmusson DC (1970) Frequency and distribution of stomata in barley. Crop Sci 10:575–578

    Article  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  • Murphy KM, Campbell KG, Lyon SR, Jones SS (2007) Evidence of varietal adaptation to organic farming systems. Field Crops Res 102:172–177

    Article  Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate change impact on agriculture and costs of adaptation. Food policy report. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Nevo E, Fu Y-B, Pavlicek T, Khalifa S, Tavasi M, Beiles A (2012) Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci USA. doi:10.1073/pnas.1121411109

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Oerke E-C (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Pall P, Aina T, Stone DA, Stott PA, Nozawa T, Hilberts AGJ, Lohmann D, Allen MR (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385

    Article  PubMed  CAS  Google Scholar 

  • Paris TR, Singh A, Cueno AD, Singh VN (2008) Assessing the impact of participatory research in rice breeding on women farmers: a case study in Eastern Uttar Pradesh, India. Exp Agric 44(1):97–112

    Article  Google Scholar 

  • Pederson DG, Rathjen AJ (1981) Choosing trial sites to maximize selection response for grain yield in spring wheat. Aust J Agric Res 32:411–424

    Article  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJ, Ebskamp M, Paul M, Jeuken M, Weisbeek P, Smeekens S (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107:125–130

    PubMed  CAS  Google Scholar 

  • Pimbert M (2006) Transforming knowledge and ways of knowing for food sovereignty. International Institute for Environment and Development (IIED), London

    Google Scholar 

  • Portmann P, Ketata H (1997) Field plot technique. In: Kempton RA, Fox PN (eds) Statistical methods for plant variety evaluation. Chapman & Hall, London, pp 9–19

    Chapter  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis 84:293

    Google Scholar 

  • Ransom C, Drake C, Ando K, Olmstead J (2006) Report of breakout group 1: What kind of training do plant breeders need, and how can we most effectively provide that training? HortScience 41:53–54

    Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Applying innovations and new technologies for international collaborative wheat improvement. J Agric Sci 144:95–110

    Article  Google Scholar 

  • Rhoades R, Booth R (1982) Farmer-back-to-farmer: a model for generating acceptable agricultural technology. Agric Admin 11:127–137

    Google Scholar 

  • Rodriguez M, Rau D, Papa R, Attene G (2008) Genotype by environment interactions in barley (Hordeum vulgare L): different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment. Euphytica 163:231–247

    Article  CAS  Google Scholar 

  • Salvi S, Porfiri O, Ceccarelli S (2013) Nazareno Strampelli, the “prophet” of the green revolution. J Agri Sci 151:1–5

    Article  Google Scholar 

  • Sarker A, Erskine W (2006) Recent progress in the ancient lentil. J Agric Sci 144:19–29

    Article  Google Scholar 

  • Schiermeier Q (2011) Extreme measures. Nature 477:148–149

    Article  PubMed  CAS  Google Scholar 

  • Schlegel RHJ (2003) Dictionary of plant breeding. Food Products Press and The Haworth Reference Press, New York, NY

    Google Scholar 

  • Schnell FW (1982) A synoptic study of the methods and categories of plant breeding. Z Pflanzenzüch 89:1–18

    Google Scholar 

  • Secretariat of the Convention on Biological Diversity (2010) Global biodiversity outlook 3. Secretariat of the Convention on Biological Diversity, Montréal, 94 p

    Google Scholar 

  • Sen A (1981) Poverty and famines: an essay on entitlement and deprivation. Oxford University Press, Oxford, 270 p

    Google Scholar 

  • Simmonds NW (1984) Decentralized selection. Sugar Cane 6:8–10

    Google Scholar 

  • Simmonds NW (1991) Selection for local adaptation in a plant breeding programme. Theor Appl Genet 82:363–367

    Article  Google Scholar 

  • Simmonds NW, Talbot M (1992) Analysis of on farm rice yield data from India. Exp Agric 28:325–329

    Article  Google Scholar 

  • Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ‘genocentric’ age? J Exp Bot 56:2777–2782

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Malhotra RS, Ceccarelli S, Sarker A, Grando S, Erskine W (2003) Spatial variability models to improve dryland field trials. Exp Agric 39:1–10

    Article  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 054:1–13

    Google Scholar 

  • Skinner E (2011) Gender and climate change: overview report. Institute of Development Studies (IDS). http://www.bridge.ids.ac.uk/vfile/upload/4/document/1111/CC_OR_FINAL.pdf

    Google Scholar 

  • Soleri D, Cleveland DA, Smith SE, Ceccarelli S, Grando S, Rana RB, Rijal D, Labrada HR (2002) Understanding farmers’ knowledge as the basis for collaboration with plant breeders: methodological development and examples from ongoing research in Mexico, Syria, Cuba and Nepal. In: Cleveland DA, Soleri D (eds) Farmers, scientists and plant breeding: integrating knowledge and practice. CABI, Wallingford, Oxon, pp 19–60

    Chapter  Google Scholar 

  • Song Y, Zhang L, Vernooy R (2006) Empowering women farmers and strengthening the local seed system: action research in Guangxi, China. In: Vernooy R (ed) Social and gender analysis in natural resource management, learning studies and lessons from Asia. Sage, International Development Research Centre (IDRC), Canada, pp 130–154

    Google Scholar 

  • Stern N (2005) Stern review on the economics of climate change. http://www.hm-treasury.gov.uk/independent_reviews/stern_review_economics_climate_change/stern_review_Report.cfm

  • Strampelli N (1944) Nazareno Strampelli come pioniere e scienziato nel campo genetic. Istituto Nazionale di Genetica per la Cerealicoltura “Nazareno Strampelli”. Carlo Colombo publ, Rome

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Lj B et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151(1):53–59

    Article  Google Scholar 

  • Tubiello FN, Fischer G (2007) Reducing climate change impacts on agriculture: global and regional effects of mitigation, 2000–2080. Technol Forecast Soc Change 74:1030–1056

    Article  Google Scholar 

  • van Bueren Lammerts ET, Myers JR (eds) (2012) Organic crop breeding. Wiley-Blackwell, Hoboken, NY

    Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker G (2007) A world melting from the top down. Nature 446:718–721

    Article  PubMed  CAS  Google Scholar 

  • Weltzien E, Christinck A (2009) Methodologies for priority setting. In: Ceccarelli S, Guimaraes EP, Weltzien E (eds) Plant breeding and farmer participation. FAO, Rome, pp 75–105

    Google Scholar 

  • Williams SE, Bolitho EE, Fox S (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc R Soc Lond B 270:1887–1892

    Article  Google Scholar 

  • Woldeamlak A (2001) Mixed cropping of barley (Hordeum vulgare) and wheat (Triticum aestivum) landraces in the Central Highlands of Eritrea. PhD Thesis, Wageningen University, Wageningen

    Google Scholar 

  • Woldeamlak A, Struik PC (2000) Farmer’s use of barley and wheat landraces in the Hanfets mixed cropping system in Eritrea. In: Almekinders CJM, de Boef WS (eds) Encouraging diversity: the conservation and development of plant genetic resources. Intermediate Technology Publisher, London, pp 49–54

    Google Scholar 

  • Woldeamlak A, Grando S, Maatougui M, Ceccarelli S (2008) Hanfets, a barley and wheat mixture in Eritrea: yield, stability and farmer preferences. Field Crops Res 109:50–56

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Schwartz MD, Cleland EE (2012) Warming experiments underpredict plant phonological responses to climate change. Nature. doi:10.1038/nature11014

    PubMed  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327:617–618

    Article  Google Scholar 

  • World Bank, FAO, IFAD (2009) Gender in agriculture sourcebook. World Bank, Washington, DC, 764 p. doi:10.1596/978-0-8213-7587-7

  • Yan W, Hunt LA, Qinglai S, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605

    Article  Google Scholar 

  • Zhang Y, Chen W, Cihlar J (2003) A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J Geophys Res 108:4695. doi:10.1029/2002JD003354

    Article  Google Scholar 

  • Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the several hundred farmers who made their knowledge freely available, and the several researchers, extension staff and NGOs who make this work possible, and several donors who have supported participatory plant breeding at ICARDA. These include the OPEC Fund for International Development, the Governments of Italy, Denmark, and Switzerland, der Bundesminister für Wirtschaftliche Zusammenarbeit (BMZ, Germany), the International Development Research Center (IDRC, Canada), the System Wide Program on Participatory Research and Gender Analysis (SWP PRGA), the Water and Food Challenge Program of the CGIAR, the International Fund for Agricultural Development (IFAD), the Region Friuli-Venezia Giulia, the International Treaty on Plant Genetic Resources for Food and Agriculture, the University of Wageningen, and the Global Crop Diversity Trust

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ceccarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ceccarelli, S., Galie, A., Grando, S. (2013). Participatory Breeding for Climate Change-Related Traits. In: Kole, C. (eds) Genomics and Breeding for Climate-Resilient Crops. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37045-8_8

Download citation

Publish with us

Policies and ethics