Skip to main content

Optical Remote Sensing

  • Chapter
  • First Online:
  • 693 Accesses

Part of the book series: Hamburg Studies on Maritime Affairs ((HAMBURG,volume 25))

Abstract

The sensors used in this study are part of the on-board measurement system of the satellites Landsat 7, Terra and Aqua. All three are near-polar orbiting satellites. This ensures acquisition of a neighboring swath during the next orbit. Their orbits are sun-synchronous, resulting in image acquisition at nearly the same local time for each area of the world. For more technical details of satellites and sensors see [34].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Detailed wavelength ranges are listed in Appendix A.1.

  2. 2.

    http://nsidc.org/data/polar_stereo/ps_grids.html, accessed in February 2012.

  3. 3.

    Detailed wavelength ranges are listed in Appendix A.2.

  4. 4.

    https://wist.echo.nasa.gov/api/, accessed in February 2012.

  5. 5.

    Personal communication with Chrystal Schaaf, 24 August 2010.

  6. 6.

    Hierarchical Data Format.

  7. 7.

    http://nsidc.org/data/polar_stereo/ps_grids.html, accessed in February 2012.

  8. 8.

    Network Common Data Form.

References

  1. Ackerman, Frey, Strabala, Liu, Gumley, Baum, Menzel: Discriminating clear-sky from cloud with modis - algorithm theoretical basis document. Tech. rep., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin - Madison (2010)

    Google Scholar 

  2. Agarwal, S., Moon, W., Wettlaufer, J.S.: Decadal to seasonal variability of arctic sea ice albedo. Geophysical Research Letters 38, L20,504 (2011). DOI 10.1029/2011GL049109

    Google Scholar 

  3. Atkinson, P.M., Tatnall, A.R.L.: Introduction - neural networks in remote sensing. International Journal of Remote Sensing 18, 699–709 (1997). DOI 10.1080/014311697218700

    Article  Google Scholar 

  4. Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S.J., Brian, G., Gorodetzky, D.: The landsat image mosaic of Antarctica. Remote Sensing of Environment 112, 4214–4226 (2008)

    Article  Google Scholar 

  5. Birnbaum, G.e., Dierking, W.e., Hartmann, J.e., Lüpkes, C.e., Ehrlich, A.e., Garbrecht, T.e., Sellmann, M.e.: The campaign meltex with research aircraft ”polar 5” in the arctic in 2008. Berichte zur Polar- und Meeresforschung/Reports on Polar and Marine Research 593, 3–85 (2009)

    Google Scholar 

  6. Brandt, R.E., Warren, S.G., Worby, A.P., Grenfell, T.C.: Surface albedo of the Antarctic sea ice zone. Journal of Climate 18, 3606–3622 (2005)

    Article  Google Scholar 

  7. Cavalieri, D.J., Burns, B.A., Onstott, R.G.: Investigation of the effects of summer melt on the calculation of sea ice concentration using active and passive microwave data. Journal of Geophysical Research 95, No. C4, 5359–5369 (1990)

    Google Scholar 

  8. Cavalieri, D.J., Markus, T., Hall, D.K., Gasiewski, A.J., Klein, M., Ivanoff, A.: Assessment of eos aqua amsr-e arctic sea ice concentrations using landsat-7 and airborne microwave imagery. IEEE Transactions on Geoscience and Remote Sensing 44(11, Part 1), 3057–3069 (2006). DOI 10.1109/TGRS.2006.878445

    Google Scholar 

  9. Chander, G., Markham, B.L., Helder, D.L.: Summary of current radiometric calibration coefficients for landsat mss, tm, etm+, and eo-1 ali sensors. Remote Sensing of Environment 113(5), 893–903 (2009). DOI DOI: 10.1016/j.rse.2009.01.007

    Google Scholar 

  10. Comiso, J.C.: Ssm/i sea ice concentrations using the bootstrap algorithm. NASA Reference Publication 1380, 1–50 (1995)

    Google Scholar 

  11. Comiso, J.C.: Large decadal decline of the arctic multiyear ice cover. Journal of Climate 25, 1176–1193 (2012)

    Article  Google Scholar 

  12. Comiso, J.C., Kwok, R.: Surface and radiative characteristics of the summer arctic sea ice cover from multisensor satellite observation. Journal of Geophysical Research 101, No. C12, 28,397–28,416 (1996)

    Google Scholar 

  13. Curry, J.A., Schramm, J.L., Ebert, E.E.: Sea ice-albedo climate feedback mechanism. Journal of Climate 8, 240–247 (1995)

    Article  Google Scholar 

  14. Duarte, C.M., Lenton, T.M., Wadhams, P., Wassmann, P.: Abrupt climate change in the arctic. Nature Climate Change 2, 60–62 (2012)

    Article  Google Scholar 

  15. Ehn, J.K., Mundy, C.J., Barber, D.G., Hop, H., Rossnagel, A., Stewart, J.: Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian arctic. Journal of Geophysical Research 116, C00G02 (2011). DOI 10.1029/2010JC006980

    Google Scholar 

  16. Eicken, H., Grenfell, T.C., Perovich, D.K., Richter-Menge, J.A., Frey, K.: Hydraulic controls of summer arctic pack ice albedo. Journal of Geophysical Research 109, C08,007 (2004). DOI 10.1029/2003JC001989

    Google Scholar 

  17. Eicken, H., Krouse, H.R., Kadko, D., Perovich, D.K.: Tracer studies of pathways and rates of meltwater transport through arctic summer sea ice. Journal of Geophysical Research 107, C10,8046 (2002)

    Google Scholar 

  18. Eisenman, I., Wettlaufer, J.S.: Nonlinear threshold behavior during the loss of arctic sea ice-albedo. PNAS 106, 28–32 (2009). DOI 10.1073/pnas.0806887106

    Article  Google Scholar 

  19. El Naggar, S., Garrity, C., Ramseier, R.: Sea ice meltpond morphology and size distribution as determined from line scan camera local measurements in the arctic. IAPSO Proceedings XXI General Assembly 19, Honolulu, Hawaii, 5–12 August (1995)

    Google Scholar 

  20. Fetterer, F., Knowles, K., Meier, W., Savoie, M.: Sea ice index (2002, updated 2009). URL http://nsidc.org/data/g02135.html

  21. Fetterer, F., Untersteiner, N.: Observations of melt ponds on arctic sea ice. Journal of Geophysical Research 103, 24, 821–24, 835 (1998)

    Google Scholar 

  22. Fetterer, F., Wilds, S., Sloan, J.: Arctic sea ice melt pond statistics and maps, 1999–2001. Digital Media (ftp) (2008). URL http://nsidc.org/data/g02159.html

  23. Frey, K.E., Perovich, D.K., Light, B.: The spatial distribution of solar radiation under a melting arctic sea ice cover. Geophysical Research Letters 38, L22,501 (2011). DOI 10.1029/2011GL049421

    Google Scholar 

  24. GDAL Development Team: GDAL - Geospatial Data Abstraction Library, Version 1.8.1. Open Source Geospatial Foundation (2011). URL http://www.gdal.org

  25. Gonzalez Vilas, L., Evangelos, S., Torres Palenzuela, J.M.: Neural network estimation of chlorophyll a from meris full resolution data for the coastal waters of galician rias (nw Spain). Remote Sensing of Environment 115, 524–535 (2011)

    Article  Google Scholar 

  26. Grenfell, T., Maykut, G.: The optical properties of ice and snow in the arctic basin. Journal of Glaciology 18, 445–463 (1977)

    Google Scholar 

  27. Grenfell, T.C., Perovich, D.K.: Spectral albedos of sea ice and incident solar irradiance in the southern Beaufort sea. Journal of Geophysical Research 89, 3573–3580 (1984)

    Article  Google Scholar 

  28. Grenfell, T.C., Perovich, D.K.: Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. Journal of Geophysical Research 109(C1), 15 pp. (2004)

    Google Scholar 

  29. Grenfell, T.C., Perovich, D.K.: Incident spectral irradiance in the arctic basin during the summer and fall. Journal of Geophysical Research 113, D12,117 (2008). DOI 10.1029/2007JD009418

    Google Scholar 

  30. Holland, M.M., Bitz, C.M., Tremblay, B.: Future abrupt reductions in the summer arctic sea ice. Geophysical Research Letters 33, L23,503 (2006). DOI 10.1029/2006GL028024

    Google Scholar 

  31. Howell, S.E.L., Tivy, A., Yackel, J., Scharien, R.: Application of a seawinds/quikscat sea ice melt algorithm for assessing melt dynamics in the canadian arctic archipelago. Journal of geophysical research: Biogeosciences 111(C7) (2006). DOI 10.1029/2005JC003193. URL http://tinyurl.sfx.mpg.de/staj

  32. Itoh, M., Inoue, J., Shimada, K., Zimmermann, S., Kikuchi, T., Hutchings, J., McLaughlin, F., Carmack, E.: Acceleration of sea-ice melting due to transmission of solar radiation through ponded ice area in the arctic ocean: results of in situ observation from icebreakers in 2006 and 2007. Annals of Glaciology 52(57), 249–260 (2011)

    Article  Google Scholar 

  33. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python. electronic (2001). URL http://www.scipy.org/

  34. Kramer, H.J.: Observation of the Earth and its environment: survey of missions and sensors. Springer Verlag (2002)

    Google Scholar 

  35. Kurtz, N.T., Markus, T., Farrell, S.L., Worthen, D.L., Boisvert, L.N.: Observations of recent arctic sea ice volume loss and its impact on ocean-atmosphere energy exchange and ice production. Journal of Geophysical Research 116, C04,015 (2011). DOI 10.1029/2010JC006235

    Google Scholar 

  36. Kwok, R.: New high-resolution images of summer arctic sea ice. EOS 7, 53–54 (2011)

    Article  Google Scholar 

  37. Kwok, R., Untersteiner, N.: The thinning of arctic sea ice. Physics today 41, 36–41 (2011)

    Article  Google Scholar 

  38. Landsat 7 Science Data Users Handbook: Landsat 7 Science Data Users Handbook (2009)

    Google Scholar 

  39. Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping elements in the earth’s climate system. PNAS 115(6), 1786–1793 (2008)

    Article  Google Scholar 

  40. Levermann, A., Bamber, J.L., Drijfhout, S., Ganopolski, A., Haeberli, W., Harris, N.R.P., Huss, M., Krüger, K., Lenton, T.M., Lindsay, R.W., Notz, D., Wadhams, P., Weber, S.: Potential climatic transitions with profound impact on Europe. Climatic Change (2011). DOI 10.1007/s10584-011-0126-5

    Google Scholar 

  41. Liu, Y., Ackerman, S.A., Maddux, B.C., Key, J.R., Frey, R.A.: Errors in cloud detection over the arctic using a satellite imager and implications for observing feedback mechanisms. Journal of Climate 23, 1894–1907 (2009). DOI 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1 10.1175/2009JCLI3386.1

    Google Scholar 

  42. Markus, T., Cavalieri, D.J.: An enhancement of the nasa team sea ice algorithm. IEEE Transactions on Geoscience and Remote Sensing 38(3), 1387–1389 (2000)

    Article  Google Scholar 

  43. Markus, T., Cavalieri, D.J., Ivanoff, A.: The potential of using landsat 7 etm+ for the classification of sea-ice surface conditions during summer. Annals of Glaciology 34, 415–419 (2002)

    Article  Google Scholar 

  44. Markus, T., Cavalieri, D.J., Tschudi, M.A., Ivanoff, A.: Comparison of aerial video and landsat 7 data over ponded sea ice. Remote Sensing of Environment 86, 458–469 (2003). DOI 10.1016/S0034-4257(03)00124-X

    Article  Google Scholar 

  45. Markus, T., Stroeve, J.C., Miller, J.: Recent changes in arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Research 114 (2009). DOI 10.1029/2009JC005436

    Google Scholar 

  46. Maslanik, J., Drobot, S., Fowler, C., McPhee, G., Emery, W., Barry, R.: On the arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters 34, L03,711 (2007). DOI 10.1029/2006GL028269

    Google Scholar 

  47. Maslanik, J., Stroeve, J., Fowler, C., Emery, W.: Distribution and trends in arctic sea ice age through spring 2011. Geophysical Research Letters 38, L13,502 (2011). DOI 10.1029/2011GL047735

    Google Scholar 

  48. MODIS Level 1B Product User’s Guide: MODIS Level 1B Product User’s Guide. NASA/Goddard Space Flight Center (2006)

    Google Scholar 

  49. Morassutti, M.P., LeDrew, E.F.: Albedo and depth of melt ponds on sea-ice. International Journal of Climatology 16, 817–838 (1996). DOI 10.1002/(SICI)1097-0088(199607)16:7¡817::AID-JOC44¿3.0.CO;2-5

    Article  Google Scholar 

  50. Nicolaus, M., Gerland, S., Hudson, S.R., Hanson, S., Haapala, J., Perovich, D.K.: Seasonality of spectral albedo and transmittance as observed in the arctic transpolar drift in 2007. Journal of Geophysical Research 115, C11,011 (2010). DOI 10.1029/2009JC006074

    Google Scholar 

  51. Nocedal, J., Wright, S.J.: Numerical Optimization (2nd ed.). Springer (2006)

    Google Scholar 

  52. Notz, D.: The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. PNAS 106, 20,590–20,595 (2009). DOI 10.1073/pnas.0902356106

    Google Scholar 

  53. Overland, J., Bhatt, U., Key, J., Liu, Y., Walsh, J., Wang, M.: Temperature and clouds (2011). URL http://www.arctic.noaa.gov/repordcard/temperature_clouds.html

  54. Perovich, D.K.: The optical properties of sea ice. CRREL Monograph 96-1, 25 pp. (1996)

    Google Scholar 

  55. Perovich, D.K., Grenfell, T.C., Light, B., Elder, B.C., Harbeck, J., Polashenski, C., Tucker III, W.B., Stelmach, C.: Transpolar observations of the morphological properties of arctic sea ice-albedo. Journal of Geophysical Research. 114, C00A04 (2009). DOI 10.1029/2008JC004892

    Google Scholar 

  56. Perovich, D.K., Grenfell, T.C., Light, B., Hobbs, P.V.: Seasonal evolution of the albedo of multiyear arctic sea ice. Journal of Geophysical Research. 107(C10), 8044 (2002). DOI 10.1029/2000JC000438

    Article  Google Scholar 

  57. Perovich, D.K., Jones, K.F., Light, B., Eicken, H., Markus, T., Stroeve, J., Lindsay, R.: Solar partitioning in a changing arctic sea-ice cover. Annals of Glaciology 52(57), 192–196 (2011)

    Article  Google Scholar 

  58. Perovich, D.K., Light, B., Eicken, H., Jones, K.F., Runciman, K., Nghiem, S.V.: Increasing solar heating of the arctic ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophysical Research Letters 34, L19,505 (2007). DOI 10.1029/2007GL031480

    Google Scholar 

  59. Perovich, D.K., Richter-Menge, J.A., Jones, K.F., Light, B., Elder, B.C., Polashenski, C., Laroche, D., Markus, T., Lindsay, R.: Arctic sea-ice melt in 2008 and the role of solar heating. Annals of Glaciology 52(57), 355–359 (2011)

    Article  Google Scholar 

  60. Perovich, D.K., Tucker, W.B.I.: Arctic sea-ice conditions and distribution of solar radiation during summer. Annals of Glaciology 25, 445–450 (1997)

    Google Scholar 

  61. Perovich, D.K., Tucker III, W.B., Ligett, K.A.: Aerial observations of the evolution of ice surface conditions during summer. Journal of Geophysical Research. 107, 8048 (2002). DOI 10.1029/2000JC000449

    Article  Google Scholar 

  62. Petty, W.G.: A First Course in Atmospheric Radiation, 2nd edn. Sundog Publishing (2006)

    Google Scholar 

  63. Rösel, A., Kaleschke, L.: Comparison of different retrieval techniques for melt ponds on arctic sea ice from landsat and modis satellite data. Annals of Glaciology 52(57), 185–191 (2011)

    Article  Google Scholar 

  64. Rösel, A., Kaleschke, L.: Exceptional melt pond occurrence in the years 2007 and 2011 on the arctic sea ice archived from modis satellite data. Journal of Geophysical Research 117, C05,018 (2012). DOI 10.1029/2011JC007869

    Google Scholar 

  65. Rösel, A., Kaleschke, L., Birnbaum, G.: Melt ponds on arctic sea ice determined from modis satellite data using an artificial neuronal network. The Cryosphere 6-2, 431–446 (2012). DOI 10.5194/tcd-6-431-2012

    Article  Google Scholar 

  66. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  67. Sankelo, P., Haapala, J., Heiler, I., Eero, R.: Melt pond formation and temporal evolution at the station tara during summer 2007. Polar Research 29, 311–321 (2010). DOI 10.1111/j.1751-8369.2010.00161.x

    Google Scholar 

  68. Schweiger, A.J., Zhang, J., Lindsay, R.W., Steele, M.: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophysical Research Letters 35, L10,503 (2008). DOI 10.1029/2008GL033463

    Google Scholar 

  69. Serreze, M.C.: Rethinking the sea-ice tipping point. Nature 471, 47–48 (2011). DOI 10.1038/471047a

    Article  Google Scholar 

  70. Serreze, M.C., Barrett, A.P., Cassano, J.J.: Circulation and surface controls on the lower tropospheric air temperature field of the arctic. Journal of Geophysical Research 116, D07,104 (2011). DOI 10.1029/2010JD015127

    Google Scholar 

  71. Serreze, M.C., Maslanik, J.A., Scharfen, G.R., Barry, R.G., Robinson, D.A.: Interannual variations in snow melt over arctic sea ice and relationships to atmospheric forcings. Annals of Glaciology 17, 327–331 (1993)

    Google Scholar 

  72. Shokr, M.E., Sinha, N.K.: Arctic sea ice microstructure observations relevant to microwave scattering. Arctic 47, No. 3, 265–279 (1994)

    Google Scholar 

  73. Spreen, G., Kaleschke, L., Heygster, G.: Sea ice remote sensing using amsr-e 89-ghz channels. Journal of Geophysical Research 113, C02S03 (2008). DOI 10.1029/2005JC003384

    Google Scholar 

  74. Steffen, K., Schweiger, A.: Nasa team algorithm for sea ice concentration retrieval from defense meteorological satellite program special sensor microwave imager: comparison with landsat satellite imagery. Journal of Geophysical Research 96(C12), 21,971–87 (1991)

    Google Scholar 

  75. Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., Meier, W., Scambos, T.: Arctic sea ice extent plummets in 2007. EOS, Transction, AGU 89, 13–20 (2008)

    Article  Google Scholar 

  76. Stroeve, J.C., Serreze, M.C., Kay, J.E., Holland, M.M., Meier, W.M., Barrett, A.P.: The arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change (2011). DOI 10.1007/s10584-011-0101-1

    Google Scholar 

  77. Tietsche, S., Notz, D., Jungclaus, J.H., Marotzke, J.: Recovery mechanisms of arctic summer sea ice. Geophysical Research Letters 38, L02,707 (2011). DOI 10.1029/2010GL045698

    Google Scholar 

  78. Tschudi, M., Curry, J., Maslanik, J.: Determination of areal surface-feature coverage in the beaufort sea using aircraft video data. Annals of Glaciology 25, 434–438 (1997)

    Google Scholar 

  79. Tschudi, M., Curry, J., Maslanik, J.: Airborne observations of summertime surface features and their effect on surface albedo during fire/sheba. Journal of Geophysical Research. 106(D14), 15, 335–15, 344 (2001)

    Google Scholar 

  80. Tschudi, M.A., Maslanik, J.A., Perovich, D.K.: Melt pond coverage on arctic sea ice from modis. In: Proceeding, Amer. Met. Soc. 8th Conf. on Polar Meteorology and Ocean, San Diego, CA, 8–14 January, 2005 (2005)

    Google Scholar 

  81. Tschudi, M.A., Maslanik, J.A., Perovich, D.K.: Derivation of melt pond coverage on arctic sea ice using modis observation. Remote Sensing of Environment 112, 2605–2614 (2008). DOI 10.1016/j.rse.2007.12.009

    Article  Google Scholar 

  82. Vermonte, E.F., Kotchenova, S.Y., Ray, J.P.: MODIS Surface Reflectance User’s Guide. MODIS Land Surface Reflectance Science Computing Facility, version 1.2 edn. (2008). URL http://modis-sr.ltdri.org/products/MOD09_UserGuide_v1_3.pdf

  83. Warren, S.G.: Optical properties of snow. Reviews of Geophysics and Space Physics 20, 67–89 (1982)

    Article  Google Scholar 

  84. WMO: WMO Sea-Ice Nomenclature. WMO/Omm/BMO, tp. 145, supplement no. 5 edn. (1989)

    Google Scholar 

  85. Wojciechowski, M.: Ffnet: Feed-forward neural network for python, (2011). URL http://ffnet.sourceforge.net/, access date: 20 October 2011

  86. Xiong, X., Stamnes, K., Lubin, D.: Surface albedo over the arctic ocean derived from avhrr and its validation with sheba data. Journal of applied Meteorology 41, 413–425 (2002)

    Article  Google Scholar 

  87. Yackel, J.J., Barber, D.G.: Melt ponds on sea ice in the canadian archipelago 2. on the use of radarsat-1 synthetic aperture radar for geophysical inversion. Journal of Geophysical Research 105(C9), 22,061–22,070 (2000). DOI 10.1029/2000JC900076. URL http://tinyurl.sfx.mpg.de/stag

  88. Yackel, J.J., Barber, D.G., Hanesiak, J.M.: Melt ponds on sea ice in the canadian archipelago: 1. variability in morphological and radiative properties. Journal of Geophysical Research 105(C9), 22,049–22,060 (2000). DOI 10.1029/2000JC900076

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rösel, A. (2013). Optical Remote Sensing. In: Detection of Melt Ponds on Arctic Sea Ice with Optical Satellite Data. Hamburg Studies on Maritime Affairs, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37033-5_3

Download citation

Publish with us

Policies and ethics