Skip to main content

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 5))

  • 2521 Accesses

Abstract

The electronic components or devices in smart sensors and in sensor nodes of wireless sensor networks (WSN) require power for normal operation. In recent times wireless sensors and sensor networks have been widely used in many applications such as monitoring environmental parameters, monitoring and control of industrial situations, intelligent transportation, structural health monitoring, health care and so on. The advancement of electronics, embedded controller, smart wireless sensors, networking and communication have made it a possibility of the development of a low cost, low power smart wireless sensor nodes. Recently, interest in deploying WSN in different areas such as construction monitoring, security access control, lighting control, HVAC control has increased. Though a lot of researches are now conducted to minimize the power consumption of the sensor nodes, it is true with regard to sensor nodes that it requires energy to fulfill its desired role. Although there are certain situations where mains power might be available such as the smart homes, hydroponics green house, this will not always be the case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leonov, V., Torfs, T., Fiorini, P., Van Hoof, C.: Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes. IEEE Sensors Journal 7(5), 650–657 (2007)

    Article  Google Scholar 

  2. Niyato, D., Hossain, E., Rashid, M.M., Bhargava, V.K.: Wireless Sensor Networks with Energy Harvesting Technologies: A Game-Theoretic Approach to Optimal Energy Management. IEEE Wireless Communications, 90–96 (August 2007)

    Google Scholar 

  3. Tutuncuoglu, K., Yener, A.: Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes. IEEE Transactions on Wireless Communications 11(3), 1180–1189 (2012)

    Article  Google Scholar 

  4. Tashiro, K., Wakiwaka, H., Inoue, S.-I., Uchiyama, Y.: Energy Harvesting of Magnetic Power-Line Noise. IEEE Transactions on Magnetics 47(10), 4441–4444 (2011)

    Article  Google Scholar 

  5. Jornet, J.M., Akyildiz, I.F.: Joint Energy Harvesting and Communication Analysis for Perpetual Wireless Nanosensor Networks in the Terahertz Band. IEEE Transactions on Nanotechnology 11(3), 570–580 (2012)

    Article  Google Scholar 

  6. Jung, H.-J., Lee, S.-W., Jang, D.-D.: Feasibility Study on a New Energy Harvesting Electromagnetic Device Using Aerodynamic Instability. IEEE Transactions on Magnetics 45(10), 4376–4379 (2009)

    Article  Google Scholar 

  7. Nintanavongsa, P., Muncuk, U., Lewis, D.R., Chowdhury, K.R.: Design Optimization and Implementation for RF Energy Harvesting Circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(1), 24–33 (2012)

    Article  Google Scholar 

  8. Yoo, H., Shim, M., Kim, D.: Dynamic Duty-Cycle Scheduling Schemes for Energy-Harvesting Wireless Sensor Networks. IEEE Communications Letters 16(2), 202–204 (2012)

    Article  Google Scholar 

  9. Hande, A., Bridgelall, R., Zoghi, B.: Vibration Energy Harvesting for Disaster Asset Monitoring Using Active RFID Tags. Proceedings of the IEEE 98(9), 1620–1628 (2010)

    Article  Google Scholar 

  10. Beeby, S.P., Tudor, M.J., White, N.M.: Energy Harvesting Vibration Sources for Microsystems Applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Google Scholar 

  11. Tan, Y.K., Panda, S.K.: Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes. IEEE Transactions on Industrial Electronics 58(9), 4424–4435 (2011)

    Article  Google Scholar 

  12. Gilbert, J.M., Balouchi, F.: Comparison of Energy Harvesting Systems for Wireless Sensor Networks. International Journal of Automation and Computing 05(4), 334–347 (2008)

    Article  Google Scholar 

  13. Marian, V., Allard, B., Vollaire, C., Verdier, J.: Strategy for Microwave Energy Harvesting From Ambient Field or a Feeding Source. IEEE Transactions on Power Electronics 27(11), 4481–4491 (2012)

    Article  Google Scholar 

  14. Liu, S., Lu, J., Wu, Q., Qiu, Q.: Harvesting-Aware Power Management for Real-Time Systems With Renewable Energy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20(8), 1473–1485 (2012)

    Article  Google Scholar 

  15. Szarka, G.D., Stark, B.H., Burrow, S.G.: Review of Power Conditioning for Kinetic Energy Harvesting Systems. IEEE Transactions on Power Electronics 27(2), 803–815 (2012)

    Article  Google Scholar 

  16. Lopez-Lapena, O., Penella, M.T., Gasulla, M.: A Closed-Loop Maximum Power Point Tracker for Subwatt Photovoltaic Panels. IEEE Transactions on Industrial Electronics 59(3), 1588–1596 (2012)

    Article  Google Scholar 

  17. Manla, G., White, N.M., Tudor, M.J.: Numerical Model of a Non-Contact Piezoelectric Energy Harvester for Rotating Objects. IEEE Sensors Journal 12(6), 1785–1993 (2012)

    Article  Google Scholar 

  18. Wang, N., Zhu, Y., Wei, W., Chen, J., Liu, S., Li, P., Wen, Y.: One-to-Multipoint Laser Remote Power Supply System for Wireless Sensor Networks. IEEE Sensors Journal 12(2), 389–396 (2012)

    Article  Google Scholar 

  19. Knight, C., Davidson, J., Behrens, S.: Energy Options for Wireless Sensor Nodes. Sensors 8, 8037–8066 (2008)

    Article  Google Scholar 

  20. Giannakas, G., Plessas, F., Stamoulis, G.: Pseudo-FG technique for efficient energy Harvesting. Electronics Letters 48(9), 2 pages (2012)

    Article  Google Scholar 

  21. Richelli, A., Comensoli, S., Kovács-Vajna, Z.M.: A DC/DC Boosting Technique and Power Management for Ultralow-Voltage Energy Harvesting Applications. IEEE Transactions on Industrial Electronics 59(6), 2701–2708 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Chandra Mukhopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukhopadhyay, S.C. (2013). Power Supplies for Sensors. In: Intelligent Sensing, Instrumentation and Measurements. Smart Sensors, Measurement and Instrumentation, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37027-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37027-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37026-7

  • Online ISBN: 978-3-642-37027-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics