Skip to main content

Nitrate Anion Sensors: Their Applications and a Case Study of Their Status in Waste Water from Selected Areas of Coastal Guyana via a Spectrophotometric Method

  • Chapter
Book cover Smart Sensors for Real-Time Water Quality Monitoring

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 4))

Abstract

It is not an easy task to synthesize nitrate anion selective sensors considering that a nitrate anion is trigonally shaped, heavy solvated, has weak basicity and is difficult to form robust hydrogen bonds with ligands. In addition, anion coordination is a difficult aspect of supramolecular chemistry. Many receptors reported to date are halide selective, but few are nitrate selective. Nitrate anion receptors synthesized to date include polyammonium, amide and urea receptors amongst others. In one instance the association constant of a nitrate receptor showing the highest degree of complexation is reported to be K a = 110M− 1 in 50% DMSO-d6/CDCl3 and 20M− 1 in 100% DMSO-d6 respectively. Globally, the presence of nitrate anions in water beyond the threshold limit can be deleterious to both flora and fauna life. Guyana’s waste and domestic water needs monitoring to assess the concentration of toxic anions and cations. High levels of nitrate anions beyond the threshold limit can induce the “blue baby” syndrome amongst other effects. One aspect of this chapter focuses on the determination of nitrate anion concentration from twelve selected areas of coastal Guyana using an ultraviolet spectrophotometric method. Areas monitored in Guyana were 58 Livelihood Village, Rose Hall Town, Skeldon GUYSUCO Estate, Good Hope, Ogle, Stabroek, Parika, Supenaam, Spring Garden in one instance. In another research endeavor, Georgetown Seawall Kingston, LBI, GUYSUCO Estate and the Canje river water at 20 and 40ft from the effluent were monitored. The results showed that the concentrations of nitrates were not as high as expected and are below the internationally accepted threshold values. In the first instance, the average concentration was measured to be 0.030 mg/L (± 0.039 mg/L), 0.064 mg/L (± 0.00292 mg/L), 0.203 mg/L (± 0.00738 mg/L), 1.772 mg/L (± 0.00 mg/L), 2.363 mg/L (± 0.839mg/L), 0.33 mg/L (± 0.156 mg/L), 0.168 mg/L (± 0.043mg/L), 0.142 mg/L (± 0.043 mg/L) and 0.178 mg/L (± 0.039 mg/L) respectively. In the second instance the measured results were 0.45 mg/L (± 0.039 mg/L), 0.01 mg/L (± 0.0033mg/L) and 0.015 mg/L (± 0.0023 mg/L) NO3- for Georgetown Seawall (Kingston area), LBI GUYSUCO Estate and the Canje river, 20 feet from the effluent respectively. The results were accepted at the 95% confidence level using statistical analyses. The US public Health Service designated the safe limit for nitrate in water as 45mg/L. The applicable range of concentrations using the above method is 0.1-2 mg/L NO3-. A maximum level of 45 mg/L is established as worldwide guidance for nitrate concentration in water. In Europe, the maximum permitted levels of nitrate in potable water is 50.0 mg/L, while in the US-EPA has established a guideline for the maximum level of nitrate-nitrogen of 10 mg/L. It can safely be informed that the twelve selected areas of coastal Guyana chosen are not polluted with anions. In an effort to improve water quality, the Government of Guyana has embarked on the construction of sand filtration and water treatment plants along the inhabited coastland of Guyana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, C.F., Lott, K.A.K.: Modern Approach to Inorganic Chemistry, 2nd edn., p. 260. Butterworths, London (1966)

    Google Scholar 

  2. Tongraar, A., Tangkawanwanit, P., Rode, B.M.: A combined QM/MM molecular dynamics simulations study of nitrate anion (NO3- in aqueous solution. J. Phys. Chem. A 110, 12908 (2006)

    Article  Google Scholar 

  3. Oberhammer, H.J.: Mol. Structure 605, 177 (2002)

    Google Scholar 

  4. Gonzales-Lebrero, M.C., Bikel, D.E., Elola, M.D., Estrin, D.A.: Solvent-induced symmetry breaking of nitrate ion in aqueous clusters, a quantum classical simulation study. J. Chem. Phys. 117, 2718 (2002)

    Article  Google Scholar 

  5. Bianchi, A., Bowman-James, K., Garcia- Espana, E.: Supramolecular Chemistry of Anions. Wiley-VCH, New York

    Google Scholar 

  6. Kang, S.O., Begum, R.A., Bowman-James, K.: Amide based ligands for Anion Coordination. Angew. Chem. Int. Ed. 45, 7882–7894 (2006)

    Article  Google Scholar 

  7. Beer, P.D., Gale, P.A.: Amide based ligands for Anion Coordination. Angew. Chem. Int. Ed. 40, 486 (2001)

    Article  Google Scholar 

  8. Gamez, P., Mooibroek, T.J., Teat, S.J., Reedijk: Anion Binding Involving π-Acidic Heteroaromatic Rings. J. Acc. Chem. Res. 40, 435–444 (2007)

    Article  Google Scholar 

  9. Lehn, J.M.: Supramolecular Chemistry: Concepts and Perspectives, 1st edn., ch.3. Wiley-VCH, New York (1995)

    Book  Google Scholar 

  10. Schmidtchen, F.P., Berger, M.: Artificial Organic Host Molecules for Anions. Chem. Rev. 97, 1609–1646 (1997)

    Article  Google Scholar 

  11. Beer, P.D.: Transition-Metal Receptor Systems for the Selective Recognition and Sensing of Anionic Guest Species. Acc. Chem. Res. 31(2), 71–80 (1998)

    Article  Google Scholar 

  12. Bowman-James, K.: The Coordination Chemistry of Anions. Acc. Chem. Res. 38, 671–678 (2005)

    Article  Google Scholar 

  13. Martinez-Manez, R., Sancenon, F.: Fluorogenic and chromogenicchemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)

    Article  Google Scholar 

  14. Sancenon, F., Descalze, A.B., Miranda, M.A., Sato, J.: A colorimetric ATP sensor based on 1,3,5-triarylpent-2-en-1,5-diones. Angew. Chem., Int. Ed. 40, 2640 (2001)

    Article  Google Scholar 

  15. Gunnlaugason, T., Davis, A.P., O’Brien, J.E., Glynn, M.: Fluorescent sensing of Pyrophosphate and Bis-carboxylates with charge neutral PET chemosensors. Org. Lett. 4, 244 (2002)

    Google Scholar 

  16. Hennrich, G., Sonnennachein, H., Reach-Genger, L.: Tetrahedron Lett. 42, 2805 (2001)

    Article  Google Scholar 

  17. Choi, K., Hamilton, A.D.: Macrocyclic anion receptors based on directed hydrogen bonding interaction. Coordination Chem. Rev. 240, 101–110 (2003)

    Article  Google Scholar 

  18. Wiskur, S.L., Ait-Hissou, H., Lavigne, J.J., Anslyn, E.V.: Teaching Old Indicators New Tricks. Acc. Chem. Res. 34, 963–972 (2001)

    Article  Google Scholar 

  19. Kuo, L., Liao, J.H., Chen, C.T., Huang, C.H., Chen, C.S., Fang, J.M.: Two Arm Ferrocene Amide Compounds: Synclinal Conformations for Selective Sensing of Dihydrogen Phosphate ion. Organic Letters 5(11), 1821–1824 (2003)

    Article  Google Scholar 

  20. Kubic, S., Goddard, R., Kirchner, R., Nolting, D., Seidel: Recognition of Anions. J. Angew. Chem. Int. Ed. 40, 2648 (2001)

    Article  Google Scholar 

  21. Korendovych, I.V., Cho, M., Butler, L.P., Staples, J.R., Rybak-Akimova, E.V.R.: Anion binding to monotopic and ditopic macrocyclic amides. Organic Letters 8(15), 3171–3174 (2006)

    Article  Google Scholar 

  22. Schearder, J.F., Engbersen, J., Casnati, A., Ungaro, R., Reinhoudt, D.N.: Complexation of halide Anions and Tricarboxylate anions by Neutral Urea Derivatives, p-tert-butylcalix[6]arene. J.Org. Chem. 60, 6448–6454 (1995)

    Article  Google Scholar 

  23. Jagessar, R.C., Shang, M., Scheidt, W.R., Burns, D.H.: Neutral Ligands for selective Chloride Anion Complexation (Cis)-5,10,15,20 -Tetrakis (2-(arylurea) phenyl porphyrins. J. Am. Chem. Soc. 120(45), 11684–11692 (1998)

    Article  Google Scholar 

  24. Jagessar, R.C., Burns, D.H. (Cis)-5,10,15,20 -Tetrakis (2-(arylurea) phenyl porphyrins: Novel neutral ligands for remarkablely selective and exceptionally strong chloride anion complexation in (CD3)2SO. J. Chem. Soc., Chem. Commun., 1685–1686 (1997)

    Google Scholar 

  25. Amemiya, S., Buhlmann, P., Umezawa, Y., Jagessar, R.C., Burns, D.H.: An ion-selective electrode for acetate based on a urea-functionalized porphyrin as a hydrogen bonding ionophore. Anal. Chem. 71(5), 1049–1054 (1999)

    Article  Google Scholar 

  26. Schearder, J., Engbersen, J.F.J., Casnati, A., Ungaro, R., Reinhoudt, D.N.: Complexation of halide Anions and Tricarboxylate anions by Neutral Urea Derivatives, p-tert-butylcalix[6]arene. J. Org. Chem. 60, 6448–6454 (1995)

    Article  Google Scholar 

  27. Konopatkin, N.M., Pakrasi, H.B., Smith, T.J.: Atomic structure of a nitrate-binding protein crucial for photosynthetic productivity. Proc. Natl. Acad. Sci. 103, 9820–9825 (2006)

    Article  Google Scholar 

  28. Fischer, K., Barbier, G.G., Hecht, H.J., Mendel, R.R., Campbell, W.H., Schwarz, G.: Structural basis of eukaryotic nitrate reduction: Crystal structures of the nitrate reductase active site. Plant Cell 17, 1167–1179 (2005)

    Article  Google Scholar 

  29. Mahoney, J.M., Stucker, K.A., Jiang, H., Carmichael, L., Brinkmann, N.R., Beatty, A.M., Noll, B.C., Smith, B.D.: Molecular Recognition of Trigonal Oxyanions Using a Ditopic Salt Receptor: Evidence for Aniostropic Shielding Surface around Nitrate Anion. J. Am. Chem. Soc. 127, 2922 (2005)

    Article  Google Scholar 

  30. Choi, K., Hamilton, A.D.: J. Chem. Soc. 125, 10241 (2003)

    Google Scholar 

  31. Beer, P.D.: Anion selective recognition and optical/electrochemical sensing by novel transition metal receptor systems, Cobalticinium Porphyrins anion receptors. J. Chem. Soc. Chem. Commun., 689–696 (1996)

    Google Scholar 

  32. Beer, P.D., Drew, M.G.B., Jagessar, R.: Selective anion recognition by Novel 5, 10, 15, 20 - tetrakis (o-ferrocenyl carbonylaminophenyl - substituted) zinc metalloporphyrin receptors. J. Chem. Soc., Dalton Trans., 881–886 (1997)

    Google Scholar 

  33. Jagessar, R.C.: PhD Theses “Anion Recognition by novel functionalised Porphyrins”: Design, Syntheses and Molecular recognition of guest substrates by novel functionalised Porphyrins, 1-326, Inorganic Chemistry Laboratory, Radcliffe Science and Bodlean library, University of Oxford (1995)

    Google Scholar 

  34. Beer, P.D., Drew, M.G.B., Hesek, D., Jagessar, R.: Spectral and Electrochemical Anion Sensing by a novel 5,10,15,20-tetrakis(R-substituted)Porphyrin Receptor(R=C6 H 4 NHC(O)C 5 H 4 CoC 5 H 5 + PF 6). J. Chem. Soc., Chem. Commun., 1187 (1995)

    Google Scholar 

  35. Beer, P.D., Graydon, A.R., Sutton, L.R.: Luminescent anion recognition: selective induced emission by binding of dihydrogenphosphate. Polyhedron 15(14), 2457–2461 (1996)

    Article  Google Scholar 

  36. Chen, Z., Graydon, A.R., Beer, P.D.: Electrochemical response to anions in acetonitrile by neutral molecular receptors containing ferrocene, amide and amine moieties. J. Chem. Soc., Faraday Trans. 92(1), 97–102 (1996)

    Article  Google Scholar 

  37. Beer, P.D., Drew, M.G.B., Smith, D.K.: Selective electrochemical recognition of bidentate anionic guests in competitive solvents using novel ferrocenyl thiourea and guanidinium receptors. J. Organomet. Chem. 543(1-2), 259–261 (1997)

    Article  Google Scholar 

  38. Cronin, L., McGregor, P.A., Parsons, S., Teat, S., Gould, R.O., White, V.A., Lang, N.J., Roberston, N.: Synthesis, structure, and complexation of a large 28-mer macrocycle containing two binding sites for either anions or metal ions Inorg. Chem. 43, 8023 (2004)

    Google Scholar 

  39. Steed, J.W.: A modular approach to anion binding podands: adaptability in design and synthesis leads to adaptability in properties. Chem. Commun., 2637–2649 (2006)

    Google Scholar 

  40. Applegarth, L., Clarke, N., Richardson, A.C., Parker, A.D.M., Radosavljevic-Evans, I., Goeta, A.E., Howard, J.A.K., Steed, J.W.: Modular Nanometer-Scale Structuring of Gel Fibres by Sequential Self-Organization. Chemical Communications 43, 5423–5425 (2005)

    Article  Google Scholar 

  41. Gupta, V.K., Singh, L.P., Chandra, S., Kumar, S., Singh, R., Sethi, B.: Anion recognition through amide-based dendritic molecule: a poly(vinyl chloride) based sensor for nitrate ion. Talanta. 85(2), 970–974 (2011)

    Article  Google Scholar 

  42. Aravamudhan, S., Bhansali, S.: Development of Micro-fluidic Nitrate Selective Sensor Based on Doped-Polypyrrole Nanowires. Sensors and Actuators B: Chemical 132(2), 623–630 (2008)

    Article  Google Scholar 

  43. Mahajan, R.K., Kaur, R., Miyake, H., Tsukube, H.: Zn(II) complex-based potentiometric sensors for selective determination of nitrate anion. Analytica Chimica Acta 584(1), 89–94 (2007)

    Article  Google Scholar 

  44. Eaton, A.D., Clessicens, S.L., Greenberg, E.A.: Standard methods for the Examination of Water and Wastewater, 19th edn., pp. 49–51. American Public Health Association, Washington, DC (1995)

    Google Scholar 

  45. Eaton, A.D., Chair, A.W.W.A., et al.: Standard methods for the examination of Water and Wastewater, 19th edn., pp. 4–67. United Book Press Inc., Baltimore (1995)

    Google Scholar 

  46. Booth, R.L.: Methods for the Chemical analysis of Water and Wastes, 2nd edn., p. 352. Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268 (1983)

    Google Scholar 

  47. Jagdeo, B.: National Development Strategy, Environmental Policy. Guyana Government Newsletter, 40–45 (2006)

    Google Scholar 

  48. Williams, N.: Guyana Times, a News Magazine (11), 113 (2010)

    Google Scholar 

  49. Elliot, S.: “Testing the water”, Royal Society of Chemistry, RSC. News Magazine 12(5), 12–13 (2008)

    Google Scholar 

  50. Peplow, M.: Nitrates pollute Gaza’s wells. Chemistry World 5(10), 25 (2008)

    Google Scholar 

  51. Tindale, S.L., Nelson, W.L.: Soil fertility and Fertilisers, 2nd edn., pp. 174–179. The Macmillan, New York (1970)

    Google Scholar 

  52. Nelson, C.L., Cox, M.M., Lehninger: Principles of BioChemistry, 4th edn., pp. 834–835. W.H. Freeman and Company, New York (2005)

    Google Scholar 

  53. Baum, R.M.: Too much Carbon Dioxide limits plants, Chemical and Engineering News. American Chemical Society News Magazines 31 (2010)

    Google Scholar 

  54. Jagessar, R.C., Sooknanan, L.: Determination of nitrate anion in waste water from nine selected areas of coastal Guyana via a Spectrophotometric method. International Journal of Research and Reviews in Applied Sciences, IJRRAS 7(2), 204–213 (2011)

    Google Scholar 

  55. Jagessar, R.C., Alleyne, O.: Determination of Nitrate Anion concentration in Waste water from selected areas of Coastal Guyana via a Spectrophotometric method. International Journal of Academic Research 3(1), 443–453 (2011)

    Google Scholar 

  56. Skoog, A.D., Holler, J.F., Nieman, A.T.: Principles of Instrumental Analysis, 5th edn., pp. 329–353. Thomson Learning, Inc. (1998)

    Google Scholar 

  57. Daniel, H.C.: Quantitative Chemical Analysis, 6th edn., pp. 61–79. W.H. Freeman and Company, New York (1998, 2003)

    Google Scholar 

  58. Tindale, S.L., Nelson, W.L.: Soil fertility and Fertilisers, 2nd edn., pp. 174–179. The Macmillan, New York (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Jagessar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jagessar, R.C. (2013). Nitrate Anion Sensors: Their Applications and a Case Study of Their Status in Waste Water from Selected Areas of Coastal Guyana via a Spectrophotometric Method. In: Mukhopadhyay, S., Mason, A. (eds) Smart Sensors for Real-Time Water Quality Monitoring. Smart Sensors, Measurement and Instrumentation, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37006-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37006-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37005-2

  • Online ISBN: 978-3-642-37006-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics