Skip to main content

Applications of Sliding Observers for FDI in Aerospace Systems

  • Chapter
Advances in Sliding Mode Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 440))

Abstract

This chapter presents applications of second order sliding mode observer schemes to three different aerospace problems. Two relate to ADDSAFE aircraft fault detection benchmark problems. Firstly, the detection and isolation problem associated with an actuator jam/runaway is considered and secondly an actuator oscillatory failure case is tackled. For the actuator jam/runaway scenario the actuator deflection becomes decoupled from the demand issued from the flight control computer and either remains fixed at some uncommanded point or ‘runs away’ to an extreme value. For the OFC problem, the reconstruction scheme requires an estimate of rod speed provided by a second order sliding mode observer. Ideally low gains in the observer are required because of the noisy environment associated with the physical system. An adaption scheme is therefore required to retain sliding in the presence of severe faults. A problem associated with fault detection in a formation flying scenario, associated with satellites is also discussed. This application to a relative degree two problem would be difficult to solve using linear observer methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwi, H., Edwards, C.: Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme. IEEE Transactions on Control Systems Technology 16(3), 499–510 (2008)

    Article  Google Scholar 

  2. Alwi, H., Edwards, C.: Oscillatory failure case detection for aircraft using an adaptive sliding mode differentiator scheme. In: American Control Conference, San Francisco, California, USA (2011)

    Google Scholar 

  3. Besch, H.M., Giesseler, H.G., Schuller, J.: Impact of electronic flight control system (EFCS) failure cases on structural design loads. Agard report 815, loads and requirements for military aircraft (1996)

    Google Scholar 

  4. Dávila, A., Moreno, J.A., Fridman, L.: Variable Gains Super-Twisting Algorithm: A Lyapunov Based Design. In: IEEE American Control Conference, pp. 968–973 (2010)

    Google Scholar 

  5. de Jager, B.: Comparison of methods to eliminate chattering and avoid steady state errors in sliding mode digital control. In: Proceedings of the IEEE VSC and Lyapunov Workshop, Sheffield, pp. 37–42 (1992)

    Google Scholar 

  6. Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection. Automatica 36, 541–553 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fridman, L., Davila, J., Levant, A.: Second-order sliding modes observer for mechanical systems. IEEE Trans. Autom. Control 50, 1785–1789 (2005)

    Article  MathSciNet  Google Scholar 

  8. Fridman, L., Davila, J., Levant, A.: High-order sliding-mode observation and fault detection. In: Proceedings of the Conference on Decision and Control, New Orleans, U.S.A., pp. 4317–4322 (2007)

    Google Scholar 

  9. Fridman, L., Levant, A.: Higher order sliding modes. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control in Engineering, pp. 53–96. Marcel Dekker, New York (2002)

    Google Scholar 

  10. Goupil, P.: Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy. Control Engineering Practice 18(9), 1110–1119 (2010)

    Article  Google Scholar 

  11. Goupil, P., Marcos, A.: Advanced diagnosis for sustainable flight guidance and control: The european addsafe project. SAE Technical Paper 2011-01-2804 (2011)

    Google Scholar 

  12. Goupil, P., Puyou, G.: A high fidelity AIRBUS benchmark for system fault detection and isolation and flight control law clearance. In: European Conference for AeroSpace Sciences (EUCASS 2011) (2011)

    Google Scholar 

  13. Hecker, S.: Nominal and faulty LFT/LPV models. ADDSAFE report D1.3.2-3, DLR (2010)

    Google Scholar 

  14. Hermans, F.J.J., Zarrop, M.B.: Sliding mode observers for robust sensor monitoring. In: Proceedings of the 13th IFAC World Congress, pp. 211–216 (1996)

    Google Scholar 

  15. Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault estimation in nonlinear uncertain systems using robust sliding–mode observers. IEE Proceedings: Control Theory & Applications 151, 29–37 (2004)

    Article  Google Scholar 

  16. Kim, Y.W., Rizzoni, G., Utkin, V.: Developing a fault tolerant power train system by integrating the design of control and diagnostics. International Journal of Robust and Nonlinear Control 11, 1095–1114 (2001)

    Article  MATH  Google Scholar 

  17. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control 76(9-10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, N.S., Feng, C.B.: A new method for suppressing chattering in variable structure feedback control systems. In: Nonlinear Control Systems Design: Science Papers of the IFAC Symposium, pp. 279–284. Pergamon, Oxford (1989)

    Google Scholar 

  19. Marcos, A.: Advanced fault diagnosis for sustainable flight guidance and control. In: 6th European Aeronautics Days, AERODAYS, Madrid, Spain (2011)

    Google Scholar 

  20. Massey, T., Shtessel, Y.: Continuous traditional and high order sliding modes for satelite formation control. AIAA Journal of Guidance Control and Dynamics 28(4), 826–831 (2005)

    Article  Google Scholar 

  21. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, pp. 2856–2861 (2008)

    Google Scholar 

  22. Tan, C.P., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. International Journal of Robust and Nonlinear Control 13, 443–463 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  24. Yang, H., Saif, M.: Fault detection in a class of nonlinear systems via adaptive sliding observer. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 2199–2204 (1995)

    Google Scholar 

  25. Yeh, H.H., Nelson, E., Sparks, A.: Nonlinear tracking control for satellite formations. AIAA Journal of Guidance Control and Dynamics 25(2), 376–386 (2002)

    Article  Google Scholar 

  26. Young, K.K.D., Drakunov, S.V.: Sliding mode control with chattering reduction. In: Proceedings of the IEEE VSC and Lyapunov Workshop, pp. 188–190 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edwards, C., Alwi, H., Menon, P.P. (2013). Applications of Sliding Observers for FDI in Aerospace Systems. In: Bandyopadhyay, B., Janardhanan, S., Spurgeon, S. (eds) Advances in Sliding Mode Control. Lecture Notes in Control and Information Sciences, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36986-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36986-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36985-8

  • Online ISBN: 978-3-642-36986-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics