Skip to main content

Abstract

Traditionally, the ossicular chain is considered as the essential content of the middle ear. It is suspended inside the cavity by ligaments and muscles, which will be addressed in their embryological development and their anatomical details in this chapter.

Nowadays, it is admitted in middle ear mechanics that the most important content of the middle ear to assure a normal sound transmission, in addition to the ossicular chain, is gas (air).

The tympanic cavity contains an average of 2 cc of air. The minimal volume of air necessary for a normal function of the middle ear is at least 0.5 cc. Air transmits the sound wave from outside to the tympanic membrane and inside the middle ear to both the oval and the round windows. Air in the middle ear serves also as an insulator. When air of the middle ear is replaced by an effusion, hearing loss will result due to the reduction of pressure difference of the sound wave in between the oval window and the round window with an escape of sound energy to the surrounding bony structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore KL, Persaud TVN. The developing human: clinically oriented embryology. 5th ed. Philadelphia: W. B. Saunders Company; 1993.

    Google Scholar 

  2. le Douarin N, Kalcheim C. The neural crest. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  3. Keith A. Human embryology and morphology. London: Edward Arnold; 1948.

    Google Scholar 

  4. Baxter JS. Frazer’s manual of embryology. 3rd ed. London: Baillière, Tindall & Cox; 1953. p. 202–5, 235–243.

    Google Scholar 

  5. Bast TH, Anson BJ, Richany SF. The development of the second branchial arch (Reichert′s cartilage), facial canal and associated structures in man. Q Bull Northwest Univ Med Sch. 1956;30:235–49.

    PubMed  Google Scholar 

  6. Anson BJ, Hanson JR, Richany SF. Early embryology of the auditory ossicles and associated structures in relation to certain anomalies observed clinically. Ann Otol. 1960;69:427–47.

    CAS  Google Scholar 

  7. Bastian D, Tran Ba Huy P. Organogenèse de l’oreille moyenne. Encycl Med Chir Paris: ORL. 1996;20-005-A-30:4–12.

    Google Scholar 

  8. Nager GT. Aural atresia: anatomy and surgery. Postgrad Med. 1961;29:529–41.

    PubMed  CAS  Google Scholar 

  9. Hough JV. Congenital malformations of the middle ear. Arch Otolaryngol. 1963;78:127–35.

    Article  Google Scholar 

  10. Nomura Y, Nagao Y, Fukaya T. Anomalies of the middle ear. Laryngoscope. 1988;98:390–3.

    Article  PubMed  CAS  Google Scholar 

  11. Rahbar R, Neault MW, Kenna MA. Congenital absence of the incus bilaterally without other otologic anomalies: a new case report. Ear Nose Throat J. 2002;81:274–8.

    PubMed  Google Scholar 

  12. Hanson JR, Anson BJ, Strickland EM. Branchial sources of the auditory ossicles in man: part II observation of embryonic stages from 7 mm to 28 mm (CR length). Arch Otolaryngol. 1962;76:200–15.

    Article  PubMed  CAS  Google Scholar 

  13. Louryan S. Développement des osselets de l’ouïe chez l’embryon humain: corrélation avec les données recueillies chez la souris. Bull Assoc Anat. 1993;77:29–32.

    CAS  Google Scholar 

  14. Louryan S, Glineur R. The mouse stapes develops mainly from the Reichert’s cartilage independently of the otic capsule. Eur Arch Biol. 1993;103:211–2.

    Google Scholar 

  15. Louryan S, Heymans O, J-C GOFFARD. Ear ­malformations in the mouse embryo after maternal administration of triazène, with clinical implications. Surg Radiol Anat. 1995;17:59–64.

    Article  PubMed  CAS  Google Scholar 

  16. Louryan S, Vanmuylder N, Resimont S. Ectopic stapes: a case report with embryologic correlations. Surg Radiol Anat. 2003;25:342–4.

    Article  PubMed  CAS  Google Scholar 

  17. Louryan S. Morphogénèse des osselets de l’oreille moyenne chez l’embryon des souris: I. Aspects morphologiques. Arch Biol. 1986;97:317–37.

    Google Scholar 

  18. Louryan S. In vitro development of mouse middle ear ossicles: a preliminary report. Eur Arch Biol. 1991;102:55–8.

    Google Scholar 

  19. Jaskoll F. Morphogensis and teratogenesis of the middle ear in animals. Birth Defects Orig Artic Ser. 1980;XVI(7):9–28.

    Google Scholar 

  20. Jaskoll TF, Maderson PFA. A histological study of the development of the avian middle ear and tympanum. Anat Rec. 1978;190:177–99. doi:10.1002/ar.1091900203.

    Article  PubMed  CAS  Google Scholar 

  21. Anson BJ, Caulowell EW. The developmental anatomy of the human stapes. Ann Otol Rhinol Laryngol. 1942;51:891–904.

    Google Scholar 

  22. Rodriguez K, Shah RK, Kenna M. Anomalies of the middle and inner ear. Otolaryngol Clin North Am. 2007;40(1):81–96, vi. Review. PubMed PMID: 17346562.

    Article  PubMed  Google Scholar 

  23. Louryan S. Pure second branchial arch syndrome. Ann Otol Rhinol Laryngol. 1993;102:904–5.

    PubMed  CAS  Google Scholar 

  24. Davies DG. Malleus fixation. J Laryngol Otol. 1968;82:331–51.

    Article  PubMed  CAS  Google Scholar 

  25. Martin JF, Bradley A, Olson EN. The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev. 1995;9:1237–49.

    Article  PubMed  CAS  Google Scholar 

  26. Funasaka S. Congenital ossicular anomalies without malformations of the external ear. Arch Otorhinolaryngol. 1979;224:231–40.

    Article  PubMed  CAS  Google Scholar 

  27. Tabb HG. Symposium: congenital anomalies of the middle ear. I. Epitympanic fixation of incus and malleus. Laryngoscope. 1976;86(2):243–6.

    Article  PubMed  CAS  Google Scholar 

  28. Mansour S, Nicolas K, Sbeity S. Triple ossicular fixation and semicircular canal malformations. J Otolaryngol. 2007;36(3):E31–4.

    Article  PubMed  Google Scholar 

  29. Kurosaki Y, Tanaka YO, Itai Y. Malleus bar as a rare cause of congenital malleus fixation: CT demonstration. AJNR Am J Neuroradiol. 1998;19:1229–30.

    PubMed  CAS  Google Scholar 

  30. Carfrae MJ, Jahrsdoerfer RA, Kesser BW. Malleus bar: an unusual ossicular abnormality in the setting of congenital aural atresia. Otol Neurotol. 2010;31(3):415–8.

    Article  PubMed  Google Scholar 

  31. Nandapalan V, Tos M. Isolated congenital stapes ankylosis: an embryologic survey and literature review. Am J Otol. 2000;21(1):71–80.

    PubMed  CAS  Google Scholar 

  32. Herman HK, Kimmelman CP. Congenital anomalies limited to the middle ear. Otolaryngol Head Neck Surg. 1992;106:285–7.

    PubMed  CAS  Google Scholar 

  33. Swartz JD, Wolfson RJ, Marlowe FI, Popky GL. Postinflammatory ossicular fixation: CT analysis with surgical correlation. Radiology. 1985;154:697–700.

    PubMed  CAS  Google Scholar 

  34. Chien W, Northrop C, Levine S, Pilch BZ, Peake WT, Rosowski JJ, et al. Anatomy of the distal incus in humans. J Assoc Res Otolaryngol. 2009;10(4):485–96.

    Article  PubMed  Google Scholar 

  35. Funnell W, Robert J, Heng Siah T, McKee Marc D, et al. On the coupling between the incus and the stapes in the cat. J Assoc Res Otolaryngol. 2005;6:9–18.

    Article  PubMed  Google Scholar 

  36. Watson C. Necrosis of the incus by the chorda tympani nerve. J Laryngol Otol. 1992;106:252–3.

    Article  PubMed  CAS  Google Scholar 

  37. Lannigan FJ, O’Higgins P, McPhie P. The vascular supply of the lenticular and long processes of the incus. Clin Otolaryngol Allied Sci. 1993;18:387–9.

    Article  PubMed  CAS  Google Scholar 

  38. Alberti PW. The blood supply of the long process of the incus and the head and neck of stapes. J Laryngol Otol. 1965;79:966–70.

    Article  PubMed  CAS  Google Scholar 

  39. aWengen DF, Nishihara S, Kurokawa H, Goode RL. Measurements of stapes superstructure. Ann Otol Rhinol Laryngol. 1995;104:311–6.

    PubMed  CAS  Google Scholar 

  40. House JW. Otosclerosis. In: Hughes GB, Pensak ML, editors. Clinical otology. 2nd ed. New York: Thieme; 1997. p. 241–9.

    Google Scholar 

  41. Bruner H. Attachment of the stapes to the oval window in man. Arch Otolaryngol. 1954;50:18–29.

    Google Scholar 

  42. Whyte Orozco JR, Cisneros Gimeno AI, Yus Gotor C, Obón Nogues JA, Pérez Sanz R, Gañet Solé JF, et al. Ontogenic development of the incudostapedial joint. Acta Otorrinolaringol Esp. 2008;59(8):384–9.

    Article  PubMed  Google Scholar 

  43. Noden DM. The embryonic origins of the avian cephalic and cervical muscles and associated connective tissues. Am J Anat. 1983;168:257–76.

    Article  PubMed  CAS  Google Scholar 

  44. Kurosaki Y, Kuramoto K, Matsumoto K, Itai Y, Hara A, Kusukari J. Congenital ossification of the stapedius tendon: diagnosis with CT. Radiology. 1995;195:711–4.

    PubMed  CAS  Google Scholar 

  45. Hough JV. Congenital malformation of the middle ear. Arch Otolaryngol. 1963;78:335–43.

    Article  PubMed  CAS  Google Scholar 

  46. Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, et al., editors. Gray’s anatomy. 38th ed. New York: Churchill Livingstone Publishers; 1995. p. 263–84.

    Google Scholar 

  47. Wynsberghe DV, Noback CR, Carola R. The senses. In: Wynsberghe DV, Noback CR, Carola R, editors. Human anatomy and physiology. 3rd ed. New York: McGraw-Hill Inc; 1995. p. 512.

    Google Scholar 

  48. Glasscock ME, Gulya AJ. Developmental anatomy of the temporal bone and skull base. In: Gulya AJ, editor. Glasscock-Shambaugh surgery of the ear. 5th ed. Hamilton: BC Decker Inc; 2003. p. 19–25.

    Google Scholar 

  49. Moreano EH, Paparella MM, Zeltman D, Goycoolea MV. Prevalence of facial canal dehiscence and of persistent stapedial artery in the human middle ear: a report of 1000 temporal bones. Laryngoscope. 1994;104:309–20.

    PubMed  CAS  Google Scholar 

  50. Steffen TN. Vascular anomalies of the middle ear. Laryngoscope. 1968;78:171–97.

    Article  PubMed  CAS  Google Scholar 

  51. David GD. Persistent stapedial artery: a temporal bone report. J Laryngol Otol. 1967;81:649–60.

    Article  Google Scholar 

  52. Silbergleit R, Quint DJ, Mehta BA, et al. The persistent stapedial artery. Am J Neuroradiol. 2000;21:572. (Case series and review of persistent stapedial artery, with a detailed discussion of embryology and developmental anatomy). [PMID: 10730654].

    PubMed  CAS  Google Scholar 

  53. Lasjaunias P, Moret J, Maelfe C. Arterial anomalies of the base of the skull. Neuroradiology. 1997;13:267–72.

    Google Scholar 

  54. Moret J. La vascularisation de l’appareil auditif. J Neuroradiol. 1982;9:209–60.

    PubMed  CAS  Google Scholar 

  55. Hammar JA. Studien ueber die Entwicklung des Vorderdarms und einiger angrenzender Organe. Arch Mikrskop Anat. 1902;59:471–628.

    Google Scholar 

  56. Palva T, Ramsay H, Böhling T. Prussak’s space revisited. Am J Otol. 1996;17(4):512–20.

    PubMed  CAS  Google Scholar 

  57. Palva T, Ramsay H. Aeration of Prussak’s space is independent of the supradiaphragmatic epitympanic compartments. Otol Neurotol. 2007;28(2):264–8.

    Article  PubMed  Google Scholar 

  58. Von Tröltsch A. Lehrbuch der Ohrenheilkunde mit Einschluss der anatomie des Ohres. 7th ed. Leipzig: FCW Vogel; 1881.

    Google Scholar 

  59. Helmholtz H. Eine kiirzlich in der Zeitschrift ftir rationelle Medicin, in Archiv für die gesamte Physiologie des Menschen und der Tiere 1868. vol 1, Issue 1. Germany: Springer; 1868. p. 1–60.

    Google Scholar 

  60. Prussak A. Zur Anatomie des menschlichen Trommelfells. Arch Ohrenheilkd. 1867;3:255–78.

    Article  Google Scholar 

  61. Palva T, Johnsson LG. Epitympanic compartment surgical considerations: reevaluation. Am J Otol. 1995;16(4):505–13.

    PubMed  CAS  Google Scholar 

  62. Onal K, Haastert RM, Grote JJ. Structural variations of supratubal recess: the anterior epitympanic space. Am J Otol. 1997;18:317–21.

    PubMed  CAS  Google Scholar 

  63. Palva T, Ramsay H, Bohlurg J. Lateral and anterior view to tensor fold and supratubal recess. Am J Otol. 1998;19:405–14.

    PubMed  CAS  Google Scholar 

  64. Chatellier HP, Lemoine J. Le diaphragme interattico-tympanique du nouveau-nÈ. Description de sa morphologie; considÈrations sur son rÙle pathogÈnique dans les oto-mastoÔdites cloisonnÈes du nourrisson. Ann Otolaryngol Chir Cervicofac (Paris). 1946;13:534–66.

    Google Scholar 

  65. Palva T, Ramsay H. Incudal folds and epitympanic aeration. Am J Otol. 1996;17:700–8.

    PubMed  CAS  Google Scholar 

  66. Palva T, Ramsay H, Böhling T. Tensor fold and anterior epitympanum. Am J Otol. 1997;18:307–16.

    PubMed  CAS  Google Scholar 

  67. Chatelliere HP, Lemoine J. Le diaphragme interattico-tympanique du nouveau-ne´. Ann Otolaryngol Chir Cervicofac. 1946;13:534–66.

    Google Scholar 

  68. Proctor B. The development of the middle ear spaces and their surgical significance. J Laryngol Otol. 1964;78:631–48.

    Article  PubMed  CAS  Google Scholar 

  69. Palva T, Ramsay H. Chronic inflammatory ear disease and cholesteatoma: creation of auxiliary attic aeration pathways by microdissection. Am J Otol. 1999;20(2):145–51.

    PubMed  CAS  Google Scholar 

  70. Marchioni D, Alicandri-Ciufelli M, Molteni G, Artioli FL, Genovese E, Presutti L. Selective epitympanic dysventilation syndrome. Laryngoscope. 2010;120(5):1028–33.

    PubMed  Google Scholar 

  71. Marchioni D, Grammatica A, Alicandri-Ciufelli M, Aggazzotti-Cavazza E, Genovese E, Presutti L. The contribution of selective dysventilation to attical middle ear pathology. Med Hypotheses. 2011;77(1):116–20.

    Article  PubMed  Google Scholar 

  72. Palva T, Böhling T, Ramsay H. Attic aeration in ­temporal bones from children with recurring ­otitis media: tympanostomy tubes did not cure disease in Prussak’s space. Am J Otol. 2000;21:485–93.

    PubMed  CAS  Google Scholar 

  73. Mansour S, Nicolas K, Naim A, et al. Inflammatory chronic otitis media and the anterior epitympanic recess. J Otolaryngol. 2005;34:149–58.

    Article  PubMed  Google Scholar 

  74. Marchioni D, Alicandri-Ciufelli M, Grammatica A, Mattioli F, Genovese E, Presutti L. Lateral endoscopic approach to epitympanic diaphragm and Prussak’s space: a dissection study. Surg Radiol Anat. 2010;32(9):843–52.

    Article  PubMed  Google Scholar 

  75. Tos M. Manual of middle ear surgery and reconstructive procedures, vol. 2. New York: Thieme publishers; 1995.

    Google Scholar 

  76. Marchioni D. Lateral endoscopic approach to epitympanic diaphragm and Prussak’s space: a dissection study. Surg Radiol Anat. 2010;32(9):843–52.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mansour, S., Magnan, J., Haidar, H., Nicolas, K., Louryan, S. (2013). Middle Ear Contents. In: Comprehensive and Clinical Anatomy of the Middle Ear. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36967-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36967-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36966-7

  • Online ISBN: 978-3-642-36967-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics