Skip to main content

Towards Real-Time Computation of Cardiac Electrophysiology for Training Simulator

  • Conference paper
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (STACOM 2012)

Abstract

This work aims at developing a training simulator for interventional radiology and thermo-ablation of cardiac arrhythmias. To achieve this, a real-time model of the cardiac electrophysiology is needed, which is very challenging due to the stiff equations involved. In this paper, we detail our contributions in order to obtain efficient cardiac electrophysiology simulations. First, an adaptive parametrisation of the Mitchell-Schaeffer model as well as numerical optimizations are proposed. An accurate computation of both conduction velocity and action potential is ensured, even with relatively coarse meshes. Second, a GPU implementation of the electrophysiology was realised in order to decrease the computation time. We evaluate our results by comparison with an accurate reference simulation using model parameters, personalized on patient data. We demonstrate that a fast simulation (close to real-time) can be obtained while keeping a precise description of the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliev, R.R., Panfilov, A.V.: A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7(3), 293–301 (1996)

    Article  Google Scholar 

  2. Allard, J., Courtecuisse, H., Faure, F.: Implicit fem solver on gpu for interactive deformation simulation. In: GPU Computing Gems, vol. 2. NVIDIA Elsevier (2011)

    Google Scholar 

  3. Bartocci, E., Cherry, E.M., Glimm, J., Grosu, R., Smolka, S.A., Fenton, F.H.: Toward real-time simulation of cardiac dynamics. In: Proceedings of the 9th International Conference on CMSB, pp. 103–112. ACM (2011)

    Google Scholar 

  4. Chhay, M., Coudière, Y., Turpault, R.: How to compute the extracellular potential in electrocardiology from an extended monodomain model. Research Report RR-7916, INRIA (2012)

    Google Scholar 

  5. Coudière, Y., Pierre, C.: Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology. Nonlinear Analysis: Real World Applications 7(4), 916–935 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numerical Analysis 46, 2443–2468 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fenton, F., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation. Chaos 8(1), 20–47 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Keener, J.P.: An eikonal-curvature equation for action potential propagation in myocardium. Journal of Mathematical Biology 29, 629–651 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lamecker, H., Mansi, T., Relan, J., Billet, F., Sermesant, M., Ayache, N., Delingette, H.: Adaptive tetrahedral meshing for personalized cardiac simulations. In: CI2BM 2009 - MICCAI Workshop on Cardiovascular Interventional Imaging and Biophysical Modelling, pp. 149–158 (2009)

    Google Scholar 

  10. Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bulletin of Mathematical Biology 65, 767–793 (2003)

    Article  Google Scholar 

  11. Pathmanathan, P., Mirams, G., Southern, J., Whiteley, J.: The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations. International Journal for Numerical Methods in Biomedical Engineering (2011)

    Google Scholar 

  12. Relan, J., Sermesant, M., Delingette, H., Pop, M., Wright, G., Ayache, N.: Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and mr data. In: IEEE International Symposium, pp. 1027–1030 (2009)

    Google Scholar 

  13. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1(6), 445–466 (1961)

    Article  Google Scholar 

  14. Tusscher, K.H.W.J.T., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. American Journal of Physiology - Heart and Circulatory Physiology 286(4), 1573–1589 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Talbot, H. et al. (2013). Towards Real-Time Computation of Cardiac Electrophysiology for Training Simulator. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics