Skip to main content

Nanotribological Phenomena, Principles and Mechanisms for MEMS

  • Chapter
  • First Online:
Nano-tribology and Materials in MEMS

Abstract

Nanotribology is referred to as a branch of tribology, which involves the interactions between two relatively moving materials in contact at a nanometer or an atomic scale. Nanotribology was stimulated by the fabrication of micro-electro-mechanical systems (MEMS). With the advent of scanning force microscopy (SPM), experimental approach to nanotribological regimes has been substantially advanced. Most common examples of nanotribological phenomena are in hard disk drives, MEMS, and nano-electro-mechanical systems (NEMS). Tribology is a surface phenomenon, which can be significantly affected by a very high surface-to-volume ratio in a micro or nanostructure. Small mass, light load, elastic deformation, and slight wear or absence of wear are typical of nanotribology. It has been widely perceived that various tribological test conditions, such as load, velocity, temperature, surface free energy, surface topography, environment, etc. play major roles in nanotribology. The experimental study of nanotribology is made possible by using surface force apparatus (SFA), atomic force microscope (AFM), friction force microscope (FFM), and ball-on-disk nanotribometer. Tribology research exceedingly needs broadened knowledge in various fields such as physics, chemistry, mechanics, materials science, etc. This chapter discusses the various aspects of nanotribology including nanofriction, nanowear and nanolubrication for MEMS. The nanotribological measurement methodologies and mathematical relationships between friction, bending and torsion forces based on AFM/LFM (lateral force microscopy) are comprehensively reviewed. The influences of various experimental conditions on nanotribology are described with various examples. Simulation techniques for nanotribology are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bhushan: Introduction to Tribology, Wiley (2002)

    Google Scholar 

  2. Hammerschmidt, J.A., Gladfelter, W.L., Haugstad, G.: Probing polymer viscoelastic relaxations with temperature-controlled friction force microscopy. Macromolecules 32, 3360–3367 (1999)

    Article  Google Scholar 

  3. Enachescu, M., van den Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.F.J., Salmeron, M.: Observation of proportionality between friction and contact area at the nanometer scale. Tribol. Lett. 7, 73–78 (1999)

    Article  Google Scholar 

  4. Ishikawa, T., Kobayashi, M., Takahara, A.: Macroscopic Frictional Properties of Poly(1-(2-methacryloyloxy)ethy1-3-butyl Imidazolium Bis(trifluoromethanesulfonyl)-imide) Brush Surfaces in an Ionic Liquid. Acs Appl. Mate. Interfaces 2, 1120–1128 (2010)

    Article  Google Scholar 

  5. Wang, X.P., Tsui, O.K.C., Xiao, X.D.: Dynamic study of polymer films by friction force microscopy with continuously varying load. Langmuir 18, 7066–7072 (2002)

    Article  Google Scholar 

  6. Zhang, Q., Archer, L.A.: Interfacial friction of surfaces grafted with one- and two-component self-assembled monolayers. Langmuir 21, 5405–5413 (2005)

    Article  Google Scholar 

  7. Tian, F., Xiao, X.D., Loy, M.M.T., Wang, C., Bai, C.L.: Humidity and temperature effect on frictional properties of mica and alkylsilane monolayer self-assembled on mica. Langmuir 15, 244–249 (1999)

    Article  Google Scholar 

  8. Liu, E., Ding, Y.F., Li, L., Blanpain, B., Celis, J.P.: Influence of humidity on the friction of diamond and diamond-like carbon materials. Tribol. Int. 40, 216–219 (2007)

    Article  Google Scholar 

  9. Zhang, W., Tanaka, A., Wazumi, K., Koga, Y.: Effect of environment on friction and wear properties of diamond-like carbon film. Thin Solid Films 413, 104–109 (2002)

    Article  Google Scholar 

  10. Kalin, M., Novak, S., Vizintin, J.: Wear and friction behavior of alumina ceramics in aqueous solutions with different pH. Wear 254, 1141–1146 (2003)

    Article  Google Scholar 

  11. Sang, Y., Dube, M., Grant, M.: Dependence of friction on roughness, velocity, and temperature. Phys. Rev. E 77, 036123 (2008)

    Article  Google Scholar 

  12. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  13. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  Google Scholar 

  14. Liu, E., Blanpain, B., Celis, J.P.: Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996)

    Article  Google Scholar 

  15. E. Liu, Chapter 5: Friction from reciprocating sliding of different scales, in Tribology Research Trends, Taisho Hasegawa (ed.), 2009, Nova, USA

    Google Scholar 

  16. Bhushan, B.: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. New York, Springer-Verlag (1996)

    Book  Google Scholar 

  17. Tao, Z., Bhushan, B.: Velocity dependence and rest time effect on nanoscale friction of ultrathin films at high sliding velocities. J. Vac. Sci. Technol. A 25, 1267–1274 (2007)

    Article  Google Scholar 

  18. Tambe, N.S., Bhushan, B.: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities. J. Phys. D 38, 764–773 (2005)

    Article  Google Scholar 

  19. Zworner, O., Holscher, H., Schwarz, U.D., Wiesendanger, R.: The velocity dependence of frictional forces in point-contact friction. Appl. Phys. A 66, S263–S267 (1998)

    Article  Google Scholar 

  20. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905–939 (1929)

    Google Scholar 

  21. Saha, B., Liu, E., Tor, S.B., Hardt, D.E., Chun, J.H., Khun, N.W.: Improvement in lifetime and replication quality of Si micromold using N:DLC:Ni coatings for microfluidic devices. Sens. Actuators B 150, 174–182 (2010)

    Article  Google Scholar 

  22. Yoon, E.S., Yang, S.H., Han, H.G., Kong, H.: An experimental study on the adhesion at a nano-contact. Wear 254, 974–980 (2003)

    Article  Google Scholar 

  23. Bhushan, B., Burton, Z.: Adhesion and friction properties of polymers in microfluidic devices. Nanotechnology 16, 467–478 (2005)

    Article  Google Scholar 

  24. Kim, K.S., Ando, Y., Kim, K.W.: The effect of temperature on the nanoscale adhesion and friction behaviors of thermoplastic polymer films. Nanotechnology 19, 105701 (2008)

    Article  Google Scholar 

  25. Charitidis, C.A., Logothetidis, S.: Effects of normal load on nanotribological properties of sputtered carbon nitride films. Diam. Relat. Mater. 14, 98–108 (2005)

    Article  Google Scholar 

  26. Charitidis, C.A., Logothetidis, S.: Effects of normal load on nanotribological properties of sputtered carbon nitride films. Diam. Relat. Mater. 14, 98–108 (2005)

    Article  Google Scholar 

  27. Yoon, E.S., Singh, R.A., Oh, H.J., Kong, H.: The effect of contact area on nano/micro-scale friction. Wear 259, 1424–1431 (2005)

    Article  Google Scholar 

  28. Patton, S.T., Eapen, K.C., Zabinski, J.S.: Effects of adsorbed water and sample aging in air on the mu N level adhesion force between Si(100) and silicon nitride. Tribol. Int. 34, 481–491 (2001)

    Article  Google Scholar 

  29. Baker, M.A., Li, J.: The influence of an OTS self-assembled monolayer on the wear-resistant properties of polysilicon based MEMS. Surf. Interface Anal. 38, 863–867 (2006)

    Article  Google Scholar 

  30. Zhuang, Y.X., Hansen, O., Knieling, T., Wang, C., Rombach, P., Lang, W., Benecke, W., Kehlenbeck, M., Koblitz, J.: Vapor-phase self-assembled monolayers for anti-stiction applications in MEMS. J. Microelectromech. Syst. 16, 1451–1460 (2007)

    Article  Google Scholar 

  31. Flater, E.E., Ashurst, W.R., Carpick, R.W.: Nanotribology of octadecyltrichlorosilane monolayers and silicon: Self-mated versus unmated interfaces and local packing density effects. Langmuir 23, 9242–9252 (2007)

    Article  Google Scholar 

  32. Ashurst, W.R., Wijesundara, M.B.J., Carraro, C., Maboudian, R.: Tribological impact of SiC encapsulation of released polycrystalline silicon microstructures. Tribol. Lett. 17, 195–198 (2004)

    Article  Google Scholar 

  33. Becker, H., Heim, U., Ieee, I.: Silicon as tool material for polymer hot embossing, in Mems ‘99: Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. pp. 228-231 (1999)

    Google Scholar 

  34. Fu, G., Tor, S., Loh, N., Tay, B., Hardt, D.E.: A micro powder injection molding apparatus for high aspect ratio metal micro-structure production. J. Micromech. Microeng. 17, 1803–1809 (2007)

    Article  Google Scholar 

  35. Hirai, Y., Yoshida, S., Takagi, N.: Defect analysis in thermal nanoimprint lithography. J. Vac. Sci. Technol. B 21, 2765–2770 (2003)

    Article  Google Scholar 

  36. A.I. Vakis, A.A. Polycarpou, Head-disk interface nanotribology for Tbit/inch(2) recording densities: near-contact and contact recording. J. Phys. D: Appl. Phys. 43 (2010) 225301_1-13

    Google Scholar 

  37. Mate, C.M.: Nanotribology of lubricated and unlubricated carbon overcoats on magnetic disks studied by friction force microscopy. Surf. Coat. Technol. 62, 373–379 (1993)

    Article  Google Scholar 

  38. Khurshudov, A., Waltman, R.J.: Tribology challenges of modern magnetic hard disk drives. Wear 250–251, 1124–1132 (2001)

    Article  Google Scholar 

  39. Chung, K.H., Kim, D.E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003)

    Article  Google Scholar 

  40. Wienss, A., Persch-Schuy, G., Vogelgesang, M., Hartmann, U.: Scratching resistance of diamond-like carbon coatings in the subnanometer regime. Appl. Phys. Lett. 75, 1077–1079 (1999)

    Article  Google Scholar 

  41. Gahlin, R., Jacobson, S.: A novel method to map and quantify wear on a micro-scale. Wear 222, 93–102 (1998)

    Article  Google Scholar 

  42. Bhushan, B., Goldade, A.V.: Kelvin probe microscopy measurements of surface potential change under wear at low loads. Wear 244, 104–117 (2000)

    Article  Google Scholar 

  43. Prabhakaran, V., Kim, S.K., Talke, F.E.: Tribology of the helical scan head tape interface. Wear 215, 91–97 (1998)

    Article  Google Scholar 

  44. Varanasi, S.S., Lauer, J.L., Talke, F.E., Wang, G., Judy, J.H.: Friction and wear studies of carbon overcoated thin films magnetic sliders: application of Raman microspectroscopy. J. Tribol. 119, 471–475 (1997)

    Article  Google Scholar 

  45. Prioli, R., Reigada, D.C., Freire, F.L.: Correlation between nano-scale friction and wear of boron carbide films deposited by dc-magnetron sputtering. Appl. Phys. Lett. 75, 1317–1319 (1999)

    Article  Google Scholar 

  46. Sundararajan, S., Bhushan, B.: Micro/nanotribological studies of polysilicon and SiC films for MEMS applications. Wear 217, 251–261 (1998)

    Article  Google Scholar 

  47. Bhushan, B., Sundararajan, S.: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. Acta Mater. 46, 3793–3804 (1998)

    Article  Google Scholar 

  48. Song, H.J., Zhang, Z.Z.: Investigation of the tribological properties of polyfluo wax/polyurethane composite coating filled with nano-SiC or nano-ZrO2. Mater. Sci. Eng. A 426, 59–65 (2006)

    Article  Google Scholar 

  49. Bowden, F.P., Tabor, D.: The Friction and lubrication of solids. Oxford University Press (1996)

    Google Scholar 

  50. Freire, F.L., Reigada, D.C., Prioli, R.: Boron carbide and boron-carbon nitride films deposited by DC-magnetron sputtering: Structural characterization and nanotribological properties. Phys. Stat. Sol. A 187, 1–12 (2001)

    Article  Google Scholar 

  51. Roy, M., Koch, T., Pauschitz, A.: The influence of sputtering procedure on nanoindentation and nanoscratch behaviour of W-S-C film. Appl. Surf. Sci. 256, 6850–6858 (2010)

    Article  Google Scholar 

  52. Miyake, S., Wang, M.: Mechanical properties of extremely thin B-C-N protective layer deposited with helium addition. Jpn. J. Appl. Phys. 43, 3566–3571 (2004)

    Article  Google Scholar 

  53. Zhao, X.Y., Perry, S.S.: The Role of Water in Modifying Friction within MoS2 Sliding Interfaces. ACS Appl. Mate. Interfaces 2, 1444–1448 (2010)

    Article  Google Scholar 

  54. Li, X.D., Wang, X.N., Bondokov, R., Morris, J., An, Y.H.H., Sudarshan, T.S.: Micro/nanoscale mechanical and tribological characterization of SiC for orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 72B, 353–361 (2005)

    Article  Google Scholar 

  55. Zhao, X.Y., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)

    Article  Google Scholar 

  56. Choi, J., Kawaguchi, M., Kato, T.: The surface coverage effect on the frictional properties of patterned PFPE nanolubricant films in HDI. IEEE Trans. Magn. 39, 2492–2494 (2003)

    Article  Google Scholar 

  57. Gao, J.X., Yeo, L.P., Chan-Park, M.B., Miao, J.M., Yan, Y.H., Sun, J.B., Lam, Y.C., Yue, C.Y.: Antistick postpassivation of high-aspect ratio silicon molds fabricated by deep-reactive ion etching. J. Microelectromech. Syst. 15, 84–93 (2006)

    Article  Google Scholar 

  58. Choi, J.H., Kawaguchi, M., Kato, T.: Nanoscale lubricant with strongly bonded phase and mobile phase. Tribol. Lett. 15, 353–358 (2003)

    Article  Google Scholar 

  59. Ashurst, W.R., Yau, C., Carraro, C., Lee, C., Kluth, G.J., Howe, R.T., Maboudian, R.: Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS. Sens. Actuators B 91, 239–248 (2001)

    Article  Google Scholar 

  60. Srinivasan, U., Houston, M.R., Howe, R.T., Maboudian, R.: Alkyltrichlorosilane-based self-assembled monolayer films for stiction reduction in silicon micromachines. J. Microelectromech. Syst. 7, 252–260 (1998)

    Article  Google Scholar 

  61. Ma, J.Q., Liu, J.X., Mo, Y.F., Bai, M.W.: Effect of multiply-alkylated cyclopentane (MAC) on durability and load-carrying capacity of self-assembled monolayers on silicon wafer. Colloids Surf. A 301, 481–489 (2007)

    Article  Google Scholar 

  62. Mo, Y.F., Zhu, M., Bai, M.W.: Preparation and nano/microtribological properties of perfluorododecanoic acid (PFDA)-3-aminopropyltriethoxysilane (APS) self-assembled dual-layer film deposited on silicon. Colloids Surf. A 322, 170–176 (2008)

    Article  Google Scholar 

  63. Kushmerick, J.G., Hankins, M.G., de Boer, M.P., Clews, P.J., Carpick, R.W., Bunker, B.C.: The influence of coating structure on micromachine stiction. Tribol. Lett. 10, 103–108 (2001)

    Article  Google Scholar 

  64. Zhuang, Y.X., Hansen, O., Knieling, T., Wang, C., Rombach, P., Lang, W., Benecke, W., Kehlenbeck, M., Koblitz, J.: Thermal stability of vapor phase deposited self-assembled monolayers for MEMS anti-stiction. J. Micromech. Microeng. 16, 2259–2264 (2006)

    Article  Google Scholar 

  65. Ashurst, W.R., Yau, C., Carraro, C., Maboudian, R., Dugger, M.T.: Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the octadecyltrichlosilane self-assembled monolayer. J. Microelectromech. Syst. 10, 41–49 (2001)

    Article  Google Scholar 

  66. Song, J., Srolovitz, D.J.: Adhesion effects in material transfer in mechanical contacts. Acta Mater. 54, 5305–5312 (2006)

    Article  Google Scholar 

  67. Shimizu, J., Eda, H., Yoritsune, M., Ohmura, E.: Molecular dynamics simulation of friction on the atomic scale. Nanotechnology 9, 118–123 (1998)

    Article  Google Scholar 

  68. Guo, Y.H., Liu, G., Xiong, Y., Tian, Y.C.: Study of the demolding process—implications for thermal stress, adhesion and friction control. J. Micromech. Microeng. 17, 9–19 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Professor Yee Cheong Lam, School of Mechanical and Aerospace Engineering, Nanyang Technological University, offered his valuable advice for the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saha , B., Liu, E., Tor, S.B. (2013). Nanotribological Phenomena, Principles and Mechanisms for MEMS. In: Sinha, S., Satyanarayana, N., Lim, S. (eds) Nano-tribology and Materials in MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36935-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36935-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36934-6

  • Online ISBN: 978-3-642-36935-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics