Type Synthesis of Parallel Mechanisms

  • Xin-Jun Liu
  • Jinsong Wang
Part of the Springer Tracts in Mechanical Engineering book series (STME)


This chapter presents several general methods to achieve type synthesis of parallel mechanisms. In particular, an evolution-based approach is used for type synthesis and comprehensive enumeration of parallel mechanisms with parallelogram, as given the number of DOF ranging from 1 to 6. A number of novel mechanical architectures can be obtained correspondingly to improve the kinematic performances of traditional parallel mechanisms. Representative types of parallel mechanisms will then be chosen to be studied more specifically in the remainder of this book.


Architectures Type synthesis DOF analysis Parallel mechanism Evolution Parallelogram 


  1. Ball RS (1990) A treatise on the theory of screws. Cambridge University Press, CambridgeGoogle Scholar
  2. Carricato M, Parenti-Castelli V (2003) A family of 3-DOF translational parallel manipulators. ASME J Mech Des 125(2):302–307CrossRefGoogle Scholar
  3. Ceccarelli M (1997) A new 3 D.O.F. spatial parallel mechanism. Mech Mach Theory 32(8):895–902MathSciNetCrossRefGoogle Scholar
  4. Chung Y-H, Lee J-W (2001) Design of a new 2 DOF parallel mechanism. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, IEEE press, Piscataway, N.J., Como, pp 129–134Google Scholar
  5. Dafaoui E-M, Amirat Y, Pontnau J, Francois C (1998) Analysis and design of a six-DOF parallel mechanism, modeling, singular configurations, and workspace. IEEE Trans Robot Autom 14(1):78–92CrossRefGoogle Scholar
  6. Dai JS, Huang Z, Lipkin H (2006) Mobility of overconstrained parallel mechanisms. ASME J Mech Des 128:220–229CrossRefGoogle Scholar
  7. Ebert-Uphoff I, Gosselin CM (1998) Kinematic study of a new type of spatial parallel platform mechanism. In: Proceedings of DETC ASME design engineering technical conferences, Atlanta, Georgia, DETC/MECH-5962, ASME press, New YorkGoogle Scholar
  8. Fang Y, Tsai L-W (2002) Structure synthesis of a class of 4-DOF and 5-DOF parallel manipulators with identical limb structures. Int J Robot Res 21(9):799–810CrossRefGoogle Scholar
  9. Frisoli A, Salsedo F, Bergamasco M (1999) Design of a new tendon driven haptic interface with six degrees of freedom. In: Proceedings of IEEE international workshop on robot and human interaction, IEEE press, Piscataway, N.J., Pisa, pp 303–308Google Scholar
  10. Gogu G (2005) Mobility of mechanisms: a critical review. Mech Mach Theory 40:1068–1097MathSciNetzbMATHCrossRefGoogle Scholar
  11. Hervé JM (1999) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34(5):719–730MathSciNetzbMATHCrossRefGoogle Scholar
  12. Honegger M, Brega R, Schweitzer G (2000) Application of a nonlinear adaptive controller to a 6 dof parallel manipulator. In: Proceedings of IEEE international conference on robotics & automation, IEEE press, Piscataway, N.J., San Francisco, CA, pp 1930–1935Google Scholar
  13. Huang T, Li M, Zhao XM et al (2005a) Conceptual design and dimensional synthesis for a 3-DOF Module of the TriVariant—a novel 5-DOF reconfigurable hybrid robot. IEEE Trans Robot 21(3):449–456CrossRefGoogle Scholar
  14. Huang T, Wang ZX, Li M, et al (2005b) A 3-DOF pure translational parallel mechanism with asymmetrical architecture. China Patent, No. 03144282.XGoogle Scholar
  15. Huang T, Zhao X, Whitehouse DJ (2002) Stiffness estimation of a tripod-based parallel kinematic machine. IEEE Trans Robot Autom 18(1):50–58CrossRefGoogle Scholar
  16. Huang Z, Li QC (2002) General methodology for the type synthesis of lower-mobility symmetrical parallel mechanisms and several novel mechanisms. Int J Robot Res 21(2):131–145CrossRefGoogle Scholar
  17. Huang Z, Li QC (2003) Type synthesis of symmetrical lower mobility parallel mechanisms using the constraint-synthesis method. Int J Robot Res 22(1):59–79Google Scholar
  18. Hudgens J, Tesar D (1988) A fully-parallel six degree-of-freedom micromanipulator: kinematics analysis and dynamic model. In: Proceedings of 20th Biennial ASME mechanisms conference, ASME press, Kissimmee, Florida, New York, pp 29–38Google Scholar
  19. Hunt KH (1978) Kinematic geometry of mechanisms. Clarendon Press, OxfordzbMATHGoogle Scholar
  20. Kim W-K, Lee J-Y, Yi BJ (1997) Analysis for a planar 3 degree-of-freedom parallel mechanism with actively adjustable stiffness characteristics. In: Proceedings of IEEE international conference on robotics and automation, IEEE press, Piscataway, N.J., New Mexico, pp 2663–2670Google Scholar
  21. Kong X, Gosselin CM (2004a) Type synthesis of 3-DOF translational parallel manipulators based on screw theory. ASME J Mech Des 126(1):83–92CrossRefGoogle Scholar
  22. Kong X, Gosselin CM (2004b) Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory. IEEE Trans Robot Autom 20(2):181–190CrossRefGoogle Scholar
  23. Kutzbach K (1933) Einzelfragen Aus Dem Gebiet Der Maschinenteile. Zeitschrift der Verein Deutscher Ingenieur 77:1168–1169Google Scholar
  24. Lerbet J (1987) Mecanique des systemes de solides rigides comportant des boucles fermees. Ph.D thesis, Paris VI, ParisGoogle Scholar
  25. Liu X-J (2001) Mechanical and kinematics design of parallel robotic mechanisms with less than six degrees of freedom. Post-Doctoral research report, Tsinghua University, Beijing (in Chinese)Google Scholar
  26. Liu X-J, Wang J, Gao F, Wang L-P (2001a) On the analysis of a new spatial three degrees of freedom parallel manipulator. IEEE Trans Robot Autom 17(6):959–968CrossRefGoogle Scholar
  27. Liu X-J, Wang J, Wang L-P, Gao F (2001b) On the design of 6-DOF parallel micro-motion manipulators. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IEEE press, Piscataway, N.J., Maui, Hawaii, pp 343–348Google Scholar
  28. Liu X-J, Bonev IA (2008) Orientation capability, error analysis, and dimensional optimization of two articulated tool heads with parallel kinematics. ASME J Manuf Sci Eng 130(1), Article Number: 011015Google Scholar
  29. Liu X-J, Pruschek P, Pritschow G (2004) A new 3-DOF parallel mechanism with full symmetrical structure and parasitic motions. In: Proceedings of international conference on intelligent manipulation and grasping, IEEE press, Piscataway, N.J., Genoa, pp 389–394Google Scholar
  30. Liu X-J, Tang X, Wang J (2005a) HANA: a novel spatial parallel manipulator with one rotational and two translational degrees of freedom. Robotica 23(2):257–270CrossRefGoogle Scholar
  31. Liu X-J, Wang J (2003) Some new parallel mechanisms containing the planar four-bar parallelogram. Int J Robot Res 22(9):717–732CrossRefGoogle Scholar
  32. Liu X-J, Wang J (2005) Some new spatial 3-DOF fully-parallel robotic mechanisms with high or improved rotational capability. In: Liu JX (ed) Robots manipulators: new research. Nova Science Publishers, New York, pp 33–64Google Scholar
  33. Liu X-J, Wang J, Pritschow G (2005b) A new family of spatial 3-DOF fully-parallel manipulators with high rotational capability. Mech Mach Theory 40(4):475–494MathSciNetzbMATHCrossRefGoogle Scholar
  34. Liu X-J, Wang Q-M, Wang J (2005c) Kinematics, dynamics and dimensional synthesis of a novel 2-DOF translational manipulator. J Intell Robot Syst 41(4):205–224CrossRefGoogle Scholar
  35. Liu X-J, Wang J, Kim J (2006) Determination of the link lengths for a spatial 3-DOF parallel manipulator. J Mech Des 128:365–373CrossRefGoogle Scholar
  36. Meng J, Liu G, Li Z (2007) A geometric theory for analysis and synthesis of sub-6 DOF parallel manipulators. IEEE Trans Robot 23(4):625–649CrossRefGoogle Scholar
  37. Merlet J-P (2000) Parallel robots. Kluwer Academic Publishers, Dordrecht, pp 15–49zbMATHGoogle Scholar
  38. Ohya Y, Arai T, Mae Y et al (1999) Development of 3-DOF finger module for micro manipulation. In: Proceedings of the 1999 IEEE/RSJ international conference on intelligent robots and systems, IEEE press, Piscataway, N.J., Kyongju, pp 894–899Google Scholar
  39. Pernette E, Clavel R (1996) Parallel robots and microrobotics. In: ISRAM’96, Montpellier, ASME press, New York, pp 535–542Google Scholar
  40. Pierrot F, Dauchez P, Fournier A (1991) Towards a fully-parallel 6 d.o.f. robot for high speed applications. In: Proceedings of IEEE international conference on robotics & automation, Sacramento, IEEE press, Piscataway, N.J., CA, pp 1288–1293Google Scholar
  41. Rico JM, Aguilera LD, Gallardo J et al (2006) A more general mobility criterion for parallel platforms. ASME J Mech Des 128:207–219CrossRefGoogle Scholar
  42. Sorli M, Ferraresi C, Kolarski M et al (1997) Mechanics of TURIN parallel robot. Mech Mach Theory 32(1):51–57zbMATHCrossRefGoogle Scholar
  43. Tahmasebi F (1992) Kinematic synthesis and analysis of a novel class of six-DOF parallel minimanipulators. Ph.D thesis, University of Maryland, College ParkGoogle Scholar
  44. Wang J, Gosselin CM (1999) Static balancing of spatial three-degree-of-freedom parallel mechanisms. Mech Mach Theory 34:437–452MathSciNetzbMATHCrossRefGoogle Scholar
  45. Yang T-L (2004) Topology structure design of robot mechanisms (in Chinese). China Machine Press, BeijingGoogle Scholar
  46. Zhao TS (2000) Some theoretical issues on analysis and synthesis for spatial imperfect-DOF parallel robots (in Chinese), Ph.D thesis, Yanshan University, QinhuangdaoGoogle Scholar
  47. Zhang D, Gosselin C M (2002) Kinetostatic analysis and design optimization of the Tricept machine tool family. ASME J Manuf Sci Eng 124(3):725–733Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xin-Jun Liu
    • 1
  • Jinsong Wang
    • 1
  1. 1.Tsinghua UniversityBeijingChina, People’s Republic

Personalised recommendations