An Approach on Merging Agents’ Trust Distributions in a Possibilitic Domain

  • Sina Honari
  • Brigitte Jaumard
  • Jamal Bentahar
Part of the Communications in Computer and Information Science book series (CCIS, volume 358)


In this paper, we propose a novel approach on merging the trust distributions of an explorer agent in its advisors with the trust distributions of the advisor agents in a target agent. These two sets of merged distributions represent the trust of different, yet connected, agents in a multi-agent system. The deduced distribution measures an approximation of the explorer agent’s trust in the target agent. The proposed approach can serve as a building block for estimating the trust distribution of an agent of interest in the multi-agent systems, who is accessible indirectly through a set of sequentially connected agents.

A common issue of modelling trust is the presence of uncertainty, which arises in scenarios where there is either lack of adequate information or variability in an agent’s level of trustworthiness. In order to represent uncertainty, possibility distributions are used to model trust of the agents.


Possibility theory Uncertainty Trust Multi-agent systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 9, 279–311 (2001)Google Scholar
  2. 2.
    Wang, Y., Singh, M.: Evidence-based trust: A mathematical model geared for multiagent systems. ACM Trans. Auton. Adapt. Syst. 5, 14:1–14:28 (2010)Google Scholar
  3. 3.
    Reece, S., Roberts, S., Rogers, A., Jennings, N.R.: A multi-dimensional trust model for heterogeneous contract observations. In: Proc. of AAAI, pp. 128–135 (2007)Google Scholar
  4. 4.
    Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation in the context of inaccurate information sources. Auton. Agent Multi-Agent Sys. 12, 183–198 (2006)CrossRefGoogle Scholar
  5. 5.
    Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Possibility Theory: An Approach to the Computerized Processing of Uncertainty. Plenum Press (1988)Google Scholar
  7. 7.
    Delmotte, F., Borne, P.: Modeling of reliability with possibility theory. IEEE Transactions on Systems, Man, and Cybernetics 28, 78–88 (1998)Google Scholar
  8. 8.
    Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. The Knowledge Engineering Review 19, 1–25 (2004)CrossRefGoogle Scholar
  9. 9.
    Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms for electronic marketplaces. Decision Support Systems 29, 371–388 (2000)CrossRefGoogle Scholar
  10. 10.
    Sabater, J., Sierra, C.: Regret: A reputation model for gregarious societies. In: 4th Workshop on Deception, Fraud and Trust in Agent Societies, pp. 61–69. ACM (2001)Google Scholar
  11. 11.
    Griffiths, N.: Task delegation using experience-based multi-dimensional trust. In: Proc. of AAMAS, pp. 489–496 (2005)Google Scholar
  12. 12.
    Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for open multi-agent systems. In: Proc. of AAMAS, vol. 13, pp. 119–154 (2006)Google Scholar
  13. 13.
    Yu, B., Singh, M.P.: An evidential model of distributed reputation management. In: Proc. of AAMAS, pp. 294–301. ACM (2002)Google Scholar
  14. 14.
    Regan, K., Poupart, P., Cohen, R.: Bayesian reputation modeling in e-marketplaces sensitive to subjecthity, deception and change. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1206–1212. AAAI Press (2006)Google Scholar
  15. 15.
    Vose, D. (ed.): Risk Analysis: A Quantitative Guide, 3rd edn. Wiley (2008)Google Scholar
  16. 16.
    Dubois, D.: Possibility theory and statistical reasoning. Computational Statistics and Data Analysis 51, 47–69 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ferson, S., Ginzburg, L.R.: Diferent methods are needed to propagate ignorance and variability. Reliability Engineering and System Safety 54, 133–144 (1996)CrossRefGoogle Scholar
  18. 18.
    Masson, M.H., Denœux, T.: Inferring a possibility distribution from empirical data. Fuzzy Sets Syst. 157, 319–340 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Goodman, L.A.: On simultaneous confidence intervals for multinomial proportions. Technometrics 7, 247–254 (1965)zbMATHCrossRefGoogle Scholar
  20. 20.
    Yager, R.: On mean type aggregation. IEEE Transactions on Systems, Man, and Cybernetics 26, 209–221 (1996)CrossRefGoogle Scholar
  21. 21.
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions. Fuzzy Sets Syst. 40, 143–202 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Yager, R.R.: On the dempster-shafer framework and new combination rules. Inf. Sci. 41, 93–137 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dubois, D., Prade, H.: When upper probabilities are possibility measures. Fuzzy Sets Syst. 49, 65–74 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Destercke, S.: Evaluating Trust from Past Assessments with Imprecise Probabilities: Comparing Two Approaches. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 151–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Campos, L., Huete, J., Moral, S.: Probability intervals: a tool for uncertain reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 2, 167–196 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing 10, 273–297 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sina Honari
    • 1
  • Brigitte Jaumard
    • 1
  • Jamal Bentahar
    • 2
  1. 1.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
  2. 2.Concordia Institute for Information System EngineeringConcordia UniversityMontrealCanada

Personalised recommendations