Advertisement

Patient Classification and Automatic Configuration of an Intelligent Wheelchair

  • Brígida Mónica Faria
  • Luís Paulo Reis
  • Nuno Lau
  • João Couto Soares
  • Sérgio Vasconcelos
Part of the Communications in Computer and Information Science book series (CCIS, volume 358)

Abstract

The access to instruments that allow higher autonomy to people is increasing and the scientific community is giving special attention on designing and developing such systems. Intelligent Wheelchairs (IW) are an example of how the knowledge on robotics and artificial intelligence may be applied to this field. IWs can have different interfaces and multimodal interfaces enabling several inputs such as head movements, joystick, facial expressions and voice commands. This paper describes the foundations for creating a simple procedure for extracting user profiles, which can be used to adequately select the best IW command mode for each user. The methodology consists on an interactive wizard composed by a flexible set of simple tasks presented to the user, and a method for extracting and analyzing the user’s execution of those tasks. The results showed that it is possible to extract simple user profiles, using the proposed method.

Keywords

Classification Patient Intelligent Wheelchair Knowledge Discovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simpson, R.C.: Smart wheelchairs: A literature review. Journal of Rehabilitation Research and Development 42(4), 423–436 (2005)CrossRefGoogle Scholar
  2. 2.
    Braga, R.A.M., Petry, M., Moreira, A.P., Reis, L.P.: Concept and Design of the Intellwheels Platform for Developing Intelligent Wheelchairs. In: Cetto, J.A., Ferrier, J.-L., Filipe, J. (eds.) Informatics in Control, Automation and Robotics. LNEE, vol. 37, pp. 191–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Reis, L.P., Braga, R.A.M., Sousa, M., Moreira, A.P.: IntellWheels MMI: A Flexible Interface for an Intelligent Wheelchair. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 296–307. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Jia, P., Hu, H., Lu, T., Yuan, K.: Head Gesture Recognition for Hands-free Control of an Intelligent Wheelchair. Journal of Industrial Robot 34(1), 60–68 (2007)CrossRefGoogle Scholar
  5. 5.
    Madarasz, R.L., Heiny, L.C., Cromp, R.F., Mazur, N.M.: The design of an autonomous vehicle for the disabled. IEEE Journal of Robotics and Automation 2(3), 117–126 (1986)Google Scholar
  6. 6.
    Hoyer, H., Hölper, R.: Open control architecture for an intelligent omnidirectional wheelchair. In: Proc.1st TIDE Congress, Brussels, pp. 93–97 (1993)Google Scholar
  7. 7.
    Levine, S.P., Bell, D.A., Jaros, L.A., Simpson, R.C., Koren, Y.: The NavChair assistive wheelchair navigation system. IEEE Transactions on Rehabilitation Engineering 7, 443–451 (1999)CrossRefGoogle Scholar
  8. 8.
    Simpson, R.C., Levine, S.P., Bell, D.A., Jaros, L.A., Koren, Y., Borenstein, J.: NavChair: An Assistive Wheelchair Navigation System with Automatic Adaptation. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and Artificial Intelligence. LNCS (LNAI), vol. 1458, pp. 235–255. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Bell, D.A., Borenstein, J., Levine, S.P., Koren, Y., Jaros, J.: An assistive navigation system for wheelchairs based upon mobile robot obstacle avoidance. In: IEEE Conf. on Robotics and Automation, pp. 2018–2022 (1994)Google Scholar
  10. 10.
    Miller, D., Slack, M.: Design and testing of a low-cost robotic wheelchair. Autonomous Robots 2, 77–88 (1995)CrossRefGoogle Scholar
  11. 11.
    Miller, D.P.: Assistive Robotics: An Overview. In: Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R.C. (eds.) Assistive Technology and AI. LNCS (LNAI), vol. 1458, pp. 126–136. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Wellman, P., Krovi, V., Kumar, V.: An adaptive mobility system for the disabled. In: Proc. IEEE Int. Conf. on Robotics and Automation (1994)Google Scholar
  13. 13.
    Borgerding, B., Ivlev, O., Martens, C., Ruchel, N., Gräser, A.: FRIEND: Functional robot arm with user friendly interface for disabled people. In: 5th European Conf. for the Advancement of Assistive Technology (1999)Google Scholar
  14. 14.
    Volosyak, I., Ivlev, O., Graser, A.: Rehabilitation robot FRIEND II - the general concept and current implementation. In: ICORR 2005 - 9th International Conference on Rehabilitation Robotics, Chicago, pp. 540–544 (2005)Google Scholar
  15. 15.
    Ng, P.C., De Silva, L.C.: Head gestures recognition. In: Proceedings International Conference on Image Processing, pp. 266–269 (2001)Google Scholar
  16. 16.
    Adachi, Y., Kuno, Y., Shimada, N., Shirai, N.: Intelligent wheelchair using visual information on human faces. In: International Conference in Intelligent Robots and Systems, vol. 1, pp. 354–359 (1998)Google Scholar
  17. 17.
    Pruski, A., Ennaji, M., Morere, Y.: VAHM: A user adapted intelligent wheelchair. In: Proceedings of the 2002 IEEE International Conference on Control Applications, Glasgow, pp. 784–789 (2002)Google Scholar
  18. 18.
    Satoh, Y., Sakaue, K.: An Omnidirectional Stereo Vision-Based Smart Wheelchair. EURASIP Journal on Image and Video, 11 (2007)Google Scholar
  19. 19.
    Gao, C., Hoffman, I., Miller, T., Panzarella, T., Spletzer, J.: Performance Characterization of LIDAR Based Localization for Docking a Smart Wheelchair System. In: International Conference on Intelligent Robots and Systems, San Diego (2008)Google Scholar
  20. 20.
    Horn, O., Kreutner, M.: Smart wheelchair perception using odometry, ultrasound sensors and camera. Robotica 27(2), 303–310 (2009)CrossRefGoogle Scholar
  21. 21.
    Hamagami, T., Hirata, H.: Development of Intelligent Wheelchair acquiring autonomous, cooperative and collaborative behaviour. In: IEEE International Conference on Systems Man and Cybernetics, vol. 4, pp. 3525–3530 (2004)Google Scholar
  22. 22.
    Lakany, H.: Steering a wheelchair by thought. In: IEE Digest, The IEE International Workshop on Intelligent Environments, vol. 2005(11059), pp. 199–202 (2005)Google Scholar
  23. 23.
    Rebsamen, B., Rebsamen, B., Burdet, E., Guan, C., Zhang, H., Teo, C.L., Zeng, Q., Ang, M., Laugier, C.: A Brain-Controlled Wheelchair Based on P300 and Path Guidance. In: IEEE/RAS-EMBS Int. Conference, vol. 20, pp. 1101–1106 (2006)Google Scholar
  24. 24.
    Emotiv, Emotiv Software Development Kit - User Manual for Release 1.0.0.4 (2011)Google Scholar
  25. 25.
    Philips, J., Millan, J., Vanacker, G., Lew, E., Galán, F., Ferrez, P., Van Brussel, H., Nuttin, M.: Adaptive shared control of a brain-actuated simulated wheelchair. In: 10th IEEE International Conference on Rehabilitation Robotics, Noordwijk (2007)Google Scholar
  26. 26.
    Matsumoto, Y., Ino, T., Ogasawara, T.: Development of Intelligent Wheelchair System with Face and Gaze Based Interface. In: 10th IEEE International Workshop on Robot and Human Communication, Bordeaux (2001)Google Scholar
  27. 27.
    Ju, S., Shin, Y., Kim, Y.: Intelligent wheelchair (iw) interface using face and mouth recognition. In: 13th International Conference on Intelligent User Interfaces, Canary Islands (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brígida Mónica Faria
    • 1
    • 2
  • Luís Paulo Reis
    • 3
    • 4
  • Nuno Lau
    • 1
  • João Couto Soares
    • 4
  • Sérgio Vasconcelos
    • 4
  1. 1.Dep. Elect., Telecomunicações e Informática (DETI/UA), Inst. Eng. Electrónica e Telemática de Aveiro (IEETA)Universidade de AveiroAveiroPortugal
  2. 2.Escola Superior de Tecnologia da Saúde do PortoInstituto Politécnico do Porto (ESTSP/IPP)Portugal
  3. 3.Escola de Engenharia da Universidade do Minho - DSIUniversidade do Minho (EEUM/DSI)GuimarãesPortugal
  4. 4.Laboratório de Inteligência Artificial e Ciência de Computadores (LIACC)Universidade do PortoPortoPortugal

Personalised recommendations