Efficient Spatial Reasoning with Rectangular Cardinal Relations and Metric Constraints

  • Angelo Montanari
  • Isabel Navarrete
  • Guido Sciavicco
  • Alberto Tonon
Part of the Communications in Computer and Information Science book series (CCIS, volume 358)


In many real-world applications of knowledge representation and reasoning formalisms, one needs to cope with a number of spatial aspects in an integrated and efficient way. In this paper, we focus our attention on the so-called Rectangular Cardinal Direction calculus for qualitative spatial reasoning on cardinal relations between rectangles whose sides are parallel to the axes of a fixed reference system. We show how to extend its convex tractable fragment with metric constraints preserving tractability. The resulting formalism makes it possible to efficiently reason about spatial knowledge specified by one qualitative constraint network and two metric networks (one for each spatial dimension). In particular, it allows one to represent definite or imprecise knowledge on directional relations between rectangles and to derive additional information about them, as well as to deal with metric constraints on the height/width of a rectangle or on the vertical/horizontal distance between the sides of two rectangles. We believe that the formalism features a good combination of simplicity, efficiency, and expressive power, making it adequate for spatial applications like, for instance, web-document query processing and automatic layout generation.


Qualitative spatial reasoning Quantitative spatial reasoning Cardinal direction relations Constraint satisfaction problems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  2. 2.
    Balbiani, P., Condotta, J.F., del Cerro, L.F.: A model for reasoning about bidimensional temporal relations. In: Proc. of KR 1998, pp. 124–130 (1998)Google Scholar
  3. 3.
    Baykan, C.A., Fox, M.D.: Spatial synthesis by disjunctive constraint satisfaction. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11(4), 245–262 (1997)CrossRefGoogle Scholar
  4. 4.
    Borning, A., Kuang-Hsu Lin, R., Marriott, K.: Constraint-based document layout for the web. Multimedia Syst. 8(3), 177–189 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Condotta, J.F.: The augmented interval and rectangle networks. In: Proc. of KR 2000, pp. 571–579 (2000)Google Scholar
  7. 7.
    Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence 49(1-3), 61–95 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gatterbauer, W., Bohunsky, P.: Table extraction using spatial reasoning on the CSS2 visual box model. In: Proc. of AAAI 2006, pp. 1313–1318 (2006)Google Scholar
  9. 9.
    Gerevini, A., Cristani, M.: On finding a solution in temporal constraint satisfaction problems. In: Proc. of IJCAI 1997, vol. 2, pp. 1460–1465 (1997)Google Scholar
  10. 10.
    Goyal, R., Egenhofer, M.: Consistent queries over cardinal directions across different levels of detail. In: Proc. of DEXA 2000, pp. 876–880 (2000)Google Scholar
  11. 11.
    Gerevini, A., Renz, J.: Combining topological and size information for spatial reasoning. Artificial Intelligence 137(1-2), 1–42 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Liu, W., Li, S.: Reasoning about cardinal directions between extended objects: The NP-hardness result. Artificial Intelligence 175(18), 2155–2169 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, W., Li, S., Renz, J.: Combining RCC-8 with qualitative direction calculi: Algorithms and complexity. In: Proc. of IJCAI 2009, pp. 854–859 (2009)Google Scholar
  14. 14.
    Liu, W., Zhang, X., Li, S., Ying, M.: Reasoning about cardinal directions between extended objects. Artificial Intelligence 174, 951–983 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Mackworth, A.K.: Consistency in Networks of Relations. Artificial Intelligence 8(1), 99–118 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. Artificial Intelligence 87(1-2), 343–385 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Montanari, A., Navarrete, I., Sciavicco, G., Tonon, A.: A tractable formalism for combining rectangular cardinal relations with metric constraints. In: Proc. of ICAART 2012, pp. 154–163 (2012)Google Scholar
  18. 18.
    Navarrete, I., Morales, A., Sciavicco, G., Cardenas, M.A.: Spatial reasoning with rectangular cardinal relations utility package for rectangular cardinal relations. Technical Report TR-DIIC 2/11, Universidad de Murcia (2011)Google Scholar
  19. 19.
    Navarrete, I., Sciavicco, G.: Spatial reasoning with rectangular cardinal direction relations. In: Proc. of the ECAI 2006 Workshop on Spatial and Temporal Reasoning, pp. 1–10 (2006)Google Scholar
  20. 20.
    Oro, E., Ruffolo, M., Staab, S.: SXPath - extending XPath towards spatial querying on web documents. Proc. of VLDB 2010 4(2), 129–140 (2010)Google Scholar
  21. 21.
    Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographical Information Science 11(2), 111–138 (1997)CrossRefGoogle Scholar
  22. 22.
    Skiadopoulos, S., Koubarakis, M.: On the consistency of cardinal directions constraints. Artificial Intelligence 163(1), 91–135 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    van Beek, P.: Reasoning about qualitative temporal information. Artificial Intelligence 58(1-3), 297–326 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Computation Intelligence 6(3), 132–147 (1990)CrossRefGoogle Scholar
  25. 25.
    Vilain, M.B., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proc. of AAAI 1986, pp. 377–382 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Angelo Montanari
    • 1
  • Isabel Navarrete
    • 2
  • Guido Sciavicco
    • 2
  • Alberto Tonon
    • 3
  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineItaly
  2. 2.Department of Information EngineeringUniversity of MurciaSpain
  3. 3.eXascale InfolabUniversity of FribourgSwitzerland

Personalised recommendations