Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7777))

Abstract

We show strongly secret achievable rate regions for two different wiretap multiple-access channel coding problems. In the first problem, each encoder has a private message and both together have a common message to transmit. The encoders have entropy-limited access to common randomness. If no common randomness is available, then the achievable region derived here does not allow for the secret transmission of a common message. The second coding problem assumes that the encoders do not have a common message nor access to common randomness. However, they may have a conferencing link over which they may iteratively exchange rate-limited information. This can be used to form a common message and common randomness to reduce the second coding problem to the first one. We give the example of a channel where the achievable region equals zero without conferencing or common randomness and where conferencing establishes the possibility of secret message transmission. Both coding problems describe practically relevant networks which need to be secured against eavesdropping attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlswede, R.: Elimination of correlation in random codes for arbitrarily varying channels. Z. Wahrscheinlichkeitstheorie verw. Gebiete 44, 159–175 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlswede, R.: Coloring hypergraphs: A new approach to multi-user source coding—II. J. Comb. Inform. Syst. Sci. 5(3), 220–268 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Ahlswede, R.: Arbitrarily varying channels with states sequence known to the sender. IEEE Trans. Inf. Theory IT 32(5), 621–629 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahlswede, R.: On Concepts of Performance Parameters for Channels. In: Ahlswede, R., Bäumer, L., Cai, N., Aydinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) Information Transfer and Combinatorics. LNCS, vol. 4123, pp. 639–663. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Ahlswede, R., Cai, N.: Arbitrarily varying multiple-access channels part I—Ericson’s symmetrizability is adequate, Gubner’s conjecture is true. IEEE Trans. Inf. Theory 45(2), 742–749 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography—part I: Secret sharing. IEEE Trans. Inf. Theory 39(4) (1993)

    Google Scholar 

  7. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography—part II: CR capacity. IEEE Trans. Inf. Theory 44(1) (1998)

    Google Scholar 

  8. Ahlswede, R., Winter, A.: Strong converse for identification vie quantum channels. IEEE Trans. Inf. Theory 48(3), 569–579 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahlswede, R.: Multi-way communication channels. In: Proceedings of 2nd International Symposium on Information Theory, Tsahkadsor, Armenian SSR, Akadémiai Kiadó, Budapest, pp. 23–52 (1971)

    Google Scholar 

  10. Ahlswede, R.: An elementary proof of the strong converse theorem for the multiple-access channel. J. Comb. Inf. Syst. Sci. 7, 216–230 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Bjelaković, I., Boche, H., Sommerfeld, J.: Secrecy results for compound wiretap channels, http://arxiv.org/abs/1106.2013

  12. Bloch, M.R., Laneman, J.N.: Secrecy from resolvability. Submitted to IEEE Trans. Inf. Theory (2011)

    Google Scholar 

  13. Cai, N., Winter, A., Yeung, R.W.: Quantum privacy and quantum wiretap channels. Problems of Information Transmission 40(4), 318–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Csiszár, I.: Almost independence and secrecy capacity. Problems of Information Transmission 32(1), 40–47 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory IT-24(3), 339–348 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  17. Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dueck, G.: The strong converse of the coding theorem for the multiple-access channel. J. Comb. Inf. Syst. Sci. 6, 187–196 (1981)

    MathSciNet  MATH  Google Scholar 

  19. Ekrem, E., Ulukus, S.: Effects of cooperation on the secrecy of multiple access channels with generalized feedback. In: Proc. Conf. on Inf. Sciences and Systems (CISS), Princeton, NJ, pp. 791–796 (2008)

    Google Scholar 

  20. Ekrem, E., Ulukus, S.: On the secrecy of multiple access wiretap channel. In: Proc. Allerton Conference, Allerton House, UIUC, IL, pp. 1014–1021 (2008)

    Google Scholar 

  21. He, X., Yener, A.: Mimo wiretap channel with arbitrarily varying eavesdropper channel states. Submitted to IEEE Trans. Inf. Theory (2010), http://arxiv.org/abs/1007.4801

  22. Körner, J., Marton, K.: The comparison of two noisy channels. In: Csiszár, I., Elias, P. (eds.) Topics in Information Theory . Coll. Math. Soc. J. Bolyai, vol. 16. North Holland, Amsterdam (1977)

    Google Scholar 

  23. Liang, Y., Poor, H.V.: Multiple-access channels with confidential messages. IEEE Trans. Inf. Theory 54(3), 976–1002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found. Trends Commun. Inf. Theory 5(4-5), 355–580 (2008)

    MATH  Google Scholar 

  25. Liao, H.J.: Multiple access channels. PhD thesis, Dept. of Electrical Engineering, University of Hawaii, Honolulu (1972)

    Google Scholar 

  26. Liu, R., Liang, Y., Poor, H.V.: Fading cognitive multiple-access channels with confidential messages. Submitted to IEEE Trans. Inf. Theory (2009), http://arxiv.org/abs/0910.4613

  27. Liu, R., Marić, I., Yates, R., Spasojević, P.: The discrete memoryless multiple-access channel with confidential messages. In: Proc. Int. Symp. Inf. Theory, Seattle, pp. 957–961 (2006)

    Google Scholar 

  28. Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maurer, U.M.: The strong secret key rate of discrete random triples. In: Blahut, R. (ed.) Communication and Cryptography — Two Sides of One Tapestry, pp. 271–285. Kluwer Academic Publishers (1994)

    Google Scholar 

  30. Pierrot, A.J., Bloch, M.R.: Strongly secure communications over the two-way wiretap channel. IEEE Trans. Inf. Forensics Secur. 6(3) (2011)

    Google Scholar 

  31. Simeone, O., Yener, A.: The cognitive multiple access wire-tap channel. In: Proc. Conf. on Inf. Sciences and Systems (CISS), Baltimore, NJ (2009)

    Google Scholar 

  32. Slepian, D., Wolf, K.: A coding theorem for multiple access channels with correlated sources. Bell Sytem Techn. J. 52(7), 1037–1076 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, X., Liu, R., Spasojević, P., Poor, H.V.: Multiple acess channels with generalized feedback and confidential messages. In: Proc. Inf. Theory Workshop, Lake Tahoe, CA, pp. 608–613 (2007)

    Google Scholar 

  34. Tekin, E., Yener, A.: The gaussian multiple access wire-tap channel. IEEE Trans. Inf. Theory 54(12), 5747–5755 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. van Dijk, M.: On a special class of broadcast channels with confidential messages. IEEE Trans. Inf. Theory 43(2), 712–714 (1997)

    Article  MATH  Google Scholar 

  36. Wiese, M., Boche, H.: The arbitrarily varying multiple-access channel with conferencing encoders. Submitted to IEEE Trans. Inf. Theory (2011), http://arxiv.org/abs/1105.0319

  37. Wiese, M., Boche, H., Bjelaković, I., Jungnickel, V.: The compound multiple access channel with partially cooperating encoders. IEEE Trans. Inf. Theory 57(5), 3045–3066 (2011)

    Article  MathSciNet  Google Scholar 

  38. Willems, F.M.J.: Informationtheoretical results for the discrete memoryless multiple access channel. PhD thesis, Katholieke Universiteit Leuven (1982)

    Google Scholar 

  39. Willems, F.M.J.: The discrete memoryless multiple access channel with partially cooperating encoders. IEEE Trans. Inf. Theory IT-29(3), 441–445 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wyner, A.: The wire-tap channel. The Bell System Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wyrembelski, R.F., Wiese, M., Boche, H.: Strong secrecy in bidirectional relay networks. In: Proc. Asilomar Conference on Signals, Systems and Computers (ACSSC 2011), Pacific Grove, CA (2011)

    Google Scholar 

  42. Yassaee, M.H., Aref, M.R.: Multiple access wiretap channels with strong secrecy. In: Proc. IEEE Information Theoy Workshop (ITW 2010), Dublin (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wiese, M., Boche, H. (2013). Strong Secrecy for Multiple Access Channels. In: Aydinian, H., Cicalese, F., Deppe, C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36899-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36899-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36898-1

  • Online ISBN: 978-3-642-36899-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics