Skip to main content
  • 2322 Accesses

Abstract

First we derive the method of characteristic lines for solving first-order quasi-linear partial differential equations, including boundary value problems; then we discuss the more sophisticated characteristic strip method. Exact first-order partial differential equations are also treated. We use the grading technique from representation theory to solve flag partial differential equations and find the complete set of polynomial solutions. Using the method of characteristic lines, we prove a Campbell–Hausdorff-type factorization of exponential differential operators and then solve the initial value problem of flag evolution partial differential equations. The factorization is also used to solve initial value problems of generalized wave equations of flag type. We prove that a two-parameter generalization of the Weyl function of type A is a solution of the Calogero–Sutherland model for quantum n-body systems in one dimension. If n=2, we find a connection between the Calogero–Sutherland model and the Gauss hypergeometric function. When n>2, we have a new class of multivariable hypergeometric functions. Finally, we use matrix differential operators and Fourier expansions to solve the Maxwell equations, the free Dirac equations, and a generalized acoustic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barros-Neto, J., Gel’fand, I.M.: Fundamental solutions for the Tricomi operator. Duke Math. J. 98, 465–483 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Barros-Neto, J., Gel’fand, I.M.: Fundamental solutions for the Tricomi operator II. Duke Math. J. 111, 561–584 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Beerends, R., Opdam, E.: Certain hypergeometric series related to the root system BC. Trans. Am. Math. Soc. 119, 581–609 (1993)

    MathSciNet  Google Scholar 

  • Calogero, F.: Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–432 (1971)

    Article  MathSciNet  Google Scholar 

  • Cao, B.: Solutions of Navier equations and their representation structure. Adv. Appl. Math. 43, 331–374 (2009)

    Article  MATH  Google Scholar 

  • Ciattonic, A., Crosignanic, B., Di Porto, P., Yariv, A.: Perfect optical solutions: spatial Kerr solutions as exact solutions of Maxwell’s equations. J. Opt. Soc. Am. B, Opt. Phys. 22(7), 1384–1394 (2005)

    Article  Google Scholar 

  • Etingof, P.: Quantum integrable systems and representations of Lie algebras. J. Math. Phys. 36(6), 2637–2651 (1995)

    Article  MathSciNet  Google Scholar 

  • Fushchich, V.I., Revenko, I.V.: Exact solutions of the Lorentz–Maxwell equations. Dokl. Akad. Nauk Ukr. SSR 85(6), 28–31 (1989)

    MathSciNet  Google Scholar 

  • Fushchich, V.I., Shtelen, V.M., Spichak, S.V.: On the connection between solutions of Dirac and Maxwell equations, dual Poincaré invariance and superalgebras of invariance and solutions of nonlinear Dirac equations. J. Phys. A 24(8), 1683–1698 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Gel’fand, I.M., Graev, M.I.: GG-functions and their relation to general hypergeometric functions. Russ. Math. Surv. 52(4), 639–684 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Heckman, G.: Root systems and hypergeometric functions II. Compos. Math. 64, 353–373 (1987)

    MathSciNet  MATH  Google Scholar 

  • Heckman, G.: Heck algebras and hypergeometric functions. Invent. Math. 100, 403–417 (1990a)

    Article  MathSciNet  MATH  Google Scholar 

  • Heckman, G.: An elementary approach to the hypergeometric shift operators of Opdam. Invent. Math. 103, 341–350 (1990b)

    Article  MathSciNet  Google Scholar 

  • Heckman, G., Opdam, E.: Root systems and hypergeometric functions I. Compos. Math. 64, 329–352 (1987)

    MathSciNet  MATH  Google Scholar 

  • Hounkonnou, M.N., Mendy, J.E.B.: Exact solutions of Dirac equation for neutrinos in presence of external fields. J. Math. Phys. 40(9), 4240–4254 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Ibragimov, N.H.: On invariance of Dirac equations. Dokl. Akad. Nauk SSSR 185, 1226–1228 (1969)

    MathSciNet  Google Scholar 

  • Ibragimov, N.H.: Lie Group Analysis of Differential Equations. CRC Handbook, vol. 2. CRC Press, Boca Raton (1995b)

    MATH  Google Scholar 

  • Inoue, A.: On construction of the fundamental solution for the free Dirac equation by Hamiltonian path-integral method. The classical counterpart of Zitterbewegung. Jpn. J. Math. 24, 297–334 (1998)

    MATH  Google Scholar 

  • Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  • Opdam, E.: Root systems and hypergeometric functions III. Compos. Math. 67, 21–49 (1988a)

    MathSciNet  MATH  Google Scholar 

  • Opdam, E.: Root systems and hypergeometric functions IV. Compos. Math. 67, 191–209 (1988b)

    MathSciNet  MATH  Google Scholar 

  • Opdam, E.: Some applications of hypergeometric shift operators. Invent. Math. 98, 1–18 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Opdam, E.: An analogue of the Gauss summation formula for hypergeometric functions related to root systems. Math. Z. 212, 313–336 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Opdam, E.: Cuspital hypergeometric functions. Methods Appl. Anal. 6, 67–80 (1999)

    MathSciNet  MATH  Google Scholar 

  • Sutherland, B.: Exact results for a quantum many-body problem in one-dimension. Phys. Rev. A 5, 1372–1376 (1972)

    Article  Google Scholar 

  • Xu, X.: Tree diagram Lie algebras of differential operators and evolution partial differential equations. J. Lie Theory 16(4), 691–718 (2006)

    MathSciNet  MATH  Google Scholar 

  • Xu, X.: Path hypergeometric functions. J. Algebra Appl. 6, 595–653 (2007b)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X.: Matrix-differential-operator approach to the Maxwell equations and the Dirac equation. Acta Appl. Math. 102, 237–247 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, X.: Flag partial differential equations and representations of Lie algebras. Acta Appl. Math. 102, 249–280 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  • Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, San Diego (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, X. (2013). First-Order or Linear Equations. In: Algebraic Approaches to Partial Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36874-5_4

Download citation

Publish with us

Policies and ethics