Skip to main content

Part of the book series: RNA Technologies ((RNATECHN))

  • 2066 Accesses

Abstract

In this chapter, we view the methodology of rational design, characterization and implementation of tecto-RNA nanoparticles for gene regulation. Since the discovery of RNA interference, there are multiple approaches undertaken towards construction and cross-membrane delivery of natural and modified RNA nanoparticles, some require transfecting agents, others trigger a cellular uptake via endocytosis. Rational design of artificial DNA/RNA nanostructures has been studied due to their intrinsic programmable properties, biocompatibility and specific recognition potential. The principles of three-dimensional structural design are outlined later in this chapter. Additionally, we view the advancements of using RNA nanoparticles for gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abels JA, Moreno-Herrero F, van der Heijden T et al (2005) Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 88:2737–2744

    PubMed  CAS  Google Scholar 

  • Andersen ES, Dong M, Nielsen MM et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    PubMed  CAS  Google Scholar 

  • Ashfaq UA, Yousaf MZ, Aslam M et al (2011) siRNAs: potential therapeutic agents against Hepatitis C virus. Virol J 8:276–282

    PubMed  CAS  Google Scholar 

  • Baigude H, McCarroll J, Yang C et al (2007) Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem Biol 2:237–241

    PubMed  CAS  Google Scholar 

  • Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed 38:2326–2343

    Google Scholar 

  • Benenson Y, Gil B, Ben-Dor U et al (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429

    PubMed  CAS  Google Scholar 

  • Bindewald E, Grunewald C, Boyle B et al (2008) Computational strategies for the automated design of RNA nanoscale structure from building blocks using NanoTiler. J Mol Graph Model 27:299–308

    PubMed  CAS  Google Scholar 

  • Birac JJ, Sherman WB, Kopatsch J et al (2006) Architecture with GIDEON, a program for design in structural DNA nanotechnology. J Mol Graph Model 25:470–480

    PubMed  CAS  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    PubMed  CAS  Google Scholar 

  • Braasch DA, Jensen S, Liu Y et al (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    PubMed  CAS  Google Scholar 

  • Brucale M, Zuccheri G, Samori B (2006) Mastering the complexity of DNA nanostructure. Trends Biotechnol 24:235–243

    PubMed  CAS  Google Scholar 

  • Brunel C, Marquet R, Romby P et al (2002) RNA loop-loop interactions as dynamic functional motifs. Biochimie 84:925–944

    PubMed  CAS  Google Scholar 

  • Cate JH, Gooding AR, Podell E et al (1996) RNA tertiary structure mediation by adenosine platforms. Science 273:1696–1699

    PubMed  CAS  Google Scholar 

  • Chang CI, Yoo JW, Hong SW et al (2009) Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol Ther 17:725–732

    PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–894

    PubMed  CAS  Google Scholar 

  • Chen C, Zhang C, Guo P (1999) Sequence requirement of hand-in hand interaction in forming of pRNA dimers and hexamers to gear phi29 DNA translocation motor. RNA 5:805–818

    PubMed  CAS  Google Scholar 

  • Chen C, Sheng S, Shao Z et al (2000) A dimer as a building block in assembling RNA: a hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem 275:17510–17516

    PubMed  CAS  Google Scholar 

  • Cherny DI, Eperon IC, Bagshaw CR (2009) Probing complexes with single fluorophores: factors contributing to dispersion of FRET in DNA/RNA duplexes. Eur Biophys J 38:395–405

    PubMed  CAS  Google Scholar 

  • Chiu CY, Rana TM (2008) Potent RNAi by short RNA triggers. RNA 14:1714–1719

    Google Scholar 

  • Chworos A (2012) Rational design of RNA nanoparticles and nanoarrays. In: Wang B (ed) RNA nanotechnology. Pan Stanford Publishing, Chicago, IL

    Google Scholar 

  • Chworos A, Severcan I, Koyfman AY et al (2004) Building programmable jigsaw puzzles with RNA. Science 36:2068–2072

    Google Scholar 

  • Coleman J, Green PJ, Inouye M (1984) The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 37:429–436

    PubMed  CAS  Google Scholar 

  • Condon A (2006) Designed DNA molecules: principles and applications of molecular nanotechnology. Nat Rev Genet 7:565–575

    PubMed  CAS  Google Scholar 

  • Costa F (2007) Non-coding RNAs: lost in translation? Gene 386:1–10

    PubMed  CAS  Google Scholar 

  • Dam E, Plei K, Draper D (1992) Structural and functional aspects of RNA pseudoknots. Biochemistry 31:11665–11676

    PubMed  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    PubMed  CAS  Google Scholar 

  • Egli M, Minasov G, Tereshko V et al (2005) Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2′-O-ribonucleic acid modifications. Biochemistry 44:9045–9057

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    PubMed  CAS  Google Scholar 

  • Elmén J, Thonberg H, Ljungberg K et al (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    PubMed  Google Scholar 

  • Emerich DF (2005) Nanomedicine-prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 5:1–5

    PubMed  CAS  Google Scholar 

  • Feldkamp U, Niemeyer CM (2006) Rational design of DNA nanoarchitectures. Angew Chem Int Ed Engl 45:1856–1876

    PubMed  CAS  Google Scholar 

  • Feng L, Park SH, Reif JH et al (2003) A two-state DNA lattice switched by DNA nanoactuator. Angew Chem Int Ed Engl 42:4342–4346

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    PubMed  CAS  Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA et al (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373–9377

    PubMed  CAS  Google Scholar 

  • Gavrilov K, Saltzman WM (2012) Therapeutic siRNA: principles, challenges and strategies. Yale J Biol Med 85:187–200

    PubMed  CAS  Google Scholar 

  • Geary C, Chworos A, Jaeger L (2011) Promot-ing RNA helical stacking via A-minor junctions. Nucleic Acids Res 39:1066–1080

    PubMed  CAS  Google Scholar 

  • Goodman RP, Schaap IA, Tardin CF et al (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    PubMed  CAS  Google Scholar 

  • Gothelf KV, LaBean TH (2005) DNA programmed assembly of nanostructure. Org Biomol Chem 3:4023–4037

    PubMed  CAS  Google Scholar 

  • Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887

    PubMed  CAS  Google Scholar 

  • Hall AHS, Wan J, Shaughnessy EE et al (2004) RNA interference using boranophospate siRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000

    PubMed  CAS  Google Scholar 

  • Hasenknopf B, Lehn JM, Kneisel BO, Baum G, Fenske D (1996) Self-assembly of a circular double helicate. Angew Chem Int Ed Engl 35:1838–1840

    Google Scholar 

  • Havens MA, Reich AA, Duelli DM et al (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 10:4626–4640

    Google Scholar 

  • Hermann T, Patel DJ (1999) Stitching together RNA tertiary architectures. J Mol Biol 294:829–849

    PubMed  CAS  Google Scholar 

  • Hess H, Vogel V (2001) Molecular shuttles based on motor proteins: active transport in synthetic environments. J Biotechnol 82:67–85

    PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    PubMed  CAS  Google Scholar 

  • Hoolbrook SR (2005) RNA structure: the long and the short of it. Curr Opin Struct Biol 15:302–308

    Google Scholar 

  • Hoshika S, Minakawa N, Shinonoya A et al (2007) Study of modification pattern RNAi activity relationships by using siRNAs modified with 4′-thioribonucleosides. Chembiochem 8:2133–2138

    PubMed  CAS  Google Scholar 

  • Ikawa Y, Fukada K, Watanabe S et al (2002) Design, construction, and analysis of a novel class of self-folding RNA. Structure 10:527–534

    PubMed  CAS  Google Scholar 

  • Ishii Y, Ishijima A, Yanagida T (2001) Single molecule nanomanipulation of biomolecules. Trends Biotechnol 19:211–216

    PubMed  CAS  Google Scholar 

  • Ishitani R, Nureki O, Nameki N et al (2003) Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Cell 113:383–394

    PubMed  CAS  Google Scholar 

  • Jackson AL, Burchard J, Leake D et al (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    PubMed  CAS  Google Scholar 

  • Jaeger L, Chworos A (2006) The architectonics of programmable RNA and DNA nanostructure. Curr Opin Struct Biol 16:531–543

    PubMed  CAS  Google Scholar 

  • Jaeger L, Westhof E, Leontis N (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res 29:455–463

    PubMed  CAS  Google Scholar 

  • Jaeger L, Verzemnieks EJ, Geary C (2009) The UA_handle: a versatile submotif in stable RNA architectures. Nucleic Acids Res 37:215–230

    PubMed  CAS  Google Scholar 

  • Johnston WK, Unrau PJ, Lawrence MS et al (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-template primer extension. Science 292:1319–1325

    PubMed  CAS  Google Scholar 

  • Khaled S, Guo FL, Guo P (2005) Controllable self-assembly of nanoparti- cles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano Lett 5(9):1797–1808

    PubMed  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    PubMed  CAS  Google Scholar 

  • Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19:1–15

    PubMed  CAS  Google Scholar 

  • Kim SH, Suddath FL, Quigley GJ et al (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–440

    PubMed  CAS  Google Scholar 

  • Kochetkov SN, Rusakova EE, Tunitskaya VL (1998) Recent studies of T7 RNA polymerase mechanism. FEBS Lett 440:264–267

    PubMed  CAS  Google Scholar 

  • Koyfman AY, Braun G, Magonov S et al (2005) Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J Am Chem Soc 127:11886–11887

    PubMed  CAS  Google Scholar 

  • Kubik T, Bogunia-Kubik K, Sugielska M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6:17–23

    PubMed  CAS  Google Scholar 

  • Laing C, Schlick T (2011) Computational approaches to RNA structure prediction, analysis, and design. Curr Opin Struct Biol 21:306–318

    PubMed  CAS  Google Scholar 

  • Lehn JM (1988) Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed Engl 27:89–112

    Google Scholar 

  • Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512

    PubMed  CAS  Google Scholar 

  • Leontis NB, Westhof E (2003) Analysis of RNA motifs. Curr Opin Struct Biol 13:300–308

    PubMed  CAS  Google Scholar 

  • Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    PubMed  CAS  Google Scholar 

  • Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Curr Opin Struct Biol 16:279–287

    PubMed  CAS  Google Scholar 

  • Li Z, Rana TM (2012) Molecular mechanisms of RNA-triggered gene silencing machineries. Acc Chem Res 45:1122–1131

    PubMed  CAS  Google Scholar 

  • Li J, Pei H, Zhu B et al (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789

    PubMed  CAS  Google Scholar 

  • Lodmell JS, Ehresmann C, Ehresmann B et al (2000) Convergence of natural and artificial evolution on an RNA loop-loop interaction: the HIV-1 dimerization initiation site. RNA 6:1267–1276

    PubMed  CAS  Google Scholar 

  • Ma RI, Kallenbach NR, Sheardy RD, Petrillo ML, Seeman NC (1986) Three-arm nucleic acid junctions are flexible. Nucleic Acids Res 14:9745–9753

    PubMed  CAS  Google Scholar 

  • Mathews DH, Turner DH (2006) Prediction of RNA secondary structure by free energy mineralization. Curr Opin Struct Biol 16:270–278

    PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14:R121–R132

    PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 1:R17–R29

    Google Scholar 

  • McCarroll J, Baigude H, Yang CS, Rana TM (2010) Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug Chem 21:56–63

    PubMed  CAS  Google Scholar 

  • Moore PB (1999) Structural motifs in RNA. Annu Rev Biochem 68:287–300

    PubMed  CAS  Google Scholar 

  • Morey C, Avner P (2004) Employment opportunities for non-coding RNAs. FEBS Lett 567:27–34

    PubMed  CAS  Google Scholar 

  • Naito Y, Yamada T, Matsumiya T et al (2005) dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res 33:W589–W591

    PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Nasalean L, Baudrey S, Leontis NB et al (2006) Controlling RNA self-assembling to form filaments. Nucleic Acids Res 34:1381–1392

    PubMed  CAS  Google Scholar 

  • Nawrot B, Sipa K (2006) Chemical and structural diversity of siRNA molecules. Curr Top Med Chem 6:913–925

    PubMed  CAS  Google Scholar 

  • Ochiya T, Takahama Y, Nagahara S et al (1999) New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 5:707–710

    PubMed  CAS  Google Scholar 

  • Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed Engl 14:2366–2393

    Google Scholar 

  • Patzel V (2007) In silico selection of active siRNA. Drug Discov Today 12:139–148

    PubMed  CAS  Google Scholar 

  • Pecot CV, Calin GA, Coleman RL et al (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67

    PubMed  CAS  Google Scholar 

  • Pinheiro AV, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    PubMed  CAS  Google Scholar 

  • Popenda M, Szachniuk M, Blazewicz M et al (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics 11:231

    PubMed  Google Scholar 

  • Rao DD, Vorhies JS, Senzer N et al (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    PubMed  CAS  Google Scholar 

  • Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    PubMed  CAS  Google Scholar 

  • Russo MV, Fratoddi I, Venditti I (2010) Nanostructured macromolecules. In: Russo MV (ed) Advances in macromolecules perspectives and applications. Springer, Dordrecht, pp 1–78

    Google Scholar 

  • Sano M, Sierant M, Miyagishi M et al (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36:5812–5821

    PubMed  CAS  Google Scholar 

  • Sarikaya M, Tamerler C, Jen AK et al (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577–585

    PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    PubMed  CAS  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    PubMed  CAS  Google Scholar 

  • Seeman NC (2003) At the crossroads of chemistry, biology and materials: structural DNA nanotechnology. Chem Biol 10:1151–1159

    PubMed  CAS  Google Scholar 

  • Seeman NC (2005a) Structural DNA nanotechnology: an overview. Methods Mol Biol 303:143–166

    PubMed  CAS  Google Scholar 

  • Seeman NC (2005b) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125

    PubMed  CAS  Google Scholar 

  • Seeman NC (2006) DNA enables nanoscale control of the structure of matter. Q Rev Biophys 6:1–9

    Google Scholar 

  • Serganov A, Patel DJ (2012) Molecular reorganization and function of riboswitches. Curr Opin Struct Biol 22:279–286

    PubMed  CAS  Google Scholar 

  • Severcan I, Geary C, Verzemnieks E et al (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277

    PubMed  CAS  Google Scholar 

  • Severcan I, Geary C, Chworos A et al (2010) A polyhedron made of tRNA. Nat Chem 2:772–779

    PubMed  CAS  Google Scholar 

  • Shastry BS (2006) Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics 6:16–21

    CAS  Google Scholar 

  • Shenton W, Pum D, Sleytr UB (2005) Nanotechnology with S-layer proteins. Methods Mol Biol 300:101–123

    Google Scholar 

  • Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621

    PubMed  CAS  Google Scholar 

  • Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277:4814–4827

    PubMed  CAS  Google Scholar 

  • Shu D, Huang L, Hoeprich S et al (2003) Construction of phi29 DNA packaging RNA (pRNA) monomers, dimers and trimers with variety of sizes and shapes as potential parts of nano-divices. J Nanosci Nanotechnol 3:295–302

    PubMed  CAS  Google Scholar 

  • Sibley CR, Seow Y, Saayman S et al (2011) The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Res 40:438–448

    PubMed  Google Scholar 

  • Sierant M, Kazmierczak-Baranska J, Paduszynska A et al (2010) Longer 19-base pair short interfering RNA duplexes rather than shorter duplexes trigger RNA interference. Oligonucleotides 20:199–206

    PubMed  CAS  Google Scholar 

  • Sipa K, Sochacka E, Kazmierczak-Baranska J et al (2007) Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13:1301–1316

    PubMed  CAS  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    PubMed  CAS  Google Scholar 

  • Takeshita F, Ochiya T (2006) Therapeutic potential of RNA interference against cancer. Cancer Sci 97:689–696

    PubMed  CAS  Google Scholar 

  • Tamura M, Hendrix DK, Klosterman PS et al (2004) SCOR: structural classification of RNA version 2.9 m. Nucleic Acids Res 32:D182–D184

    PubMed  CAS  Google Scholar 

  • Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36:2136–2151

    PubMed  CAS  Google Scholar 

  • Ui-Tei K, Nishi K, Takahashi T et al (2012) Thermodynamic control of small RNA-mediated gene silencing. Front Genet 3:101

    PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M et al (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  • Vandekerckhove L, Rijck JD, Christ F et al (2006) RNAi-based treatment of HIV/AIDS: current status and perspectives. Drug Discov Today Ther Strateg 3:227–235

    Google Scholar 

  • Westhof E, Fritsch V (2000) RNA folding: beyond Watson-Crick pairs. Structure 8:R55–R66

    PubMed  CAS  Google Scholar 

  • Westhof E, Masquida B, Jaeger L (1996) RNA tectonics: towards RNA design. Fold Des 1:R78–R88

    PubMed  CAS  Google Scholar 

  • Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93:1897–1904

    PubMed  CAS  Google Scholar 

  • Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    PubMed  CAS  Google Scholar 

  • Winfree E, Liu F, Wenzel LA et al (1998) Design and self-assembly of two- dimenstional DNA crystals. Nature 394:539–544

    PubMed  CAS  Google Scholar 

  • Woodson SA (2005) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9:104–109

    PubMed  CAS  Google Scholar 

  • Yang X, Sierant M, Janicka M et al (2012) Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. ACS Chem Biol 7:1214–1220

    PubMed  CAS  Google Scholar 

  • Yeates TO, Padila JE (2002) Designing supramolecular protein assemblies. Curr Opin Struct Biol 12:464–470

    PubMed  CAS  Google Scholar 

  • Yeung ML, Bennasser Y, Le SY et al (2005) siRNA, miRNA and HIV: promises and challenges. Cell Res 15:935–946

    PubMed  CAS  Google Scholar 

  • Zeng Y, Yi R, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    PubMed  CAS  Google Scholar 

  • Zhang S, Marini DM, Hwang W et al (2002) Design of nanostructures biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 6:865–871

    PubMed  Google Scholar 

  • Zimmermann TS, Lee ACH, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    PubMed  CAS  Google Scholar 

Website References

Download references

Acknowledgments

Work presented here was supported partially by NCN Grant N302 643740 and state funding for Polish Academy of Sciences. We would like to thank Barbara Nawrot for all support and critical reading of the manuscript. Arkadiusz Chworos wishes to dedicate this chapter to Szymon, Matylda and Jeremiasz Chworos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Chworos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pawlowska, R., Gwozdzinska, P., Chworos, A. (2013). RNA Nanoparticles for Gene Expression Regulation. In: Erdmann, V., Barciszewski, J. (eds) DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36853-0_11

Download citation

Publish with us

Policies and ethics