Skip to main content

Hyperacidic Volcanic Lakes, Metal Sinks and Magmatic Gas Expansion in Arc Volcanoes

  • Chapter
  • First Online:
Volcanic Lakes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Hyperacidic volcanic lakes are expressions of much larger scale magmatic gas expansion inside volcanoes from source to surface. Their temperature and acidity are sustained by the capture of heat and SO2 (and HCl) and a suite of metals and metalloids, including Cu, Fe, As, Au, Bi, Se, Te, and Sb, from the magmatic gas. These lakes, together with high temperature fumaroles, therefore provide clues about the physics and chemistry of high temperature gas flow at the volcano scale that otherwise are inaccessible to direct observation. Understanding of the relationship between acidic volcanic lakes and these larger scale processes also has implications for modeling the flank stability of active volcanoes and how economically-valuable copper and gold deposits formed in ancient volcanoes. Such understanding may also translate to considerations of sulfur-rich environments on other planets as well as to the origin of life on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Terminology is always important. Here the term ‘hydrothermal’ refers to processes involving hot water whether liquid or gas. Vapor means a gas phase in equilibrium with a condensed phase whether solid, liquid or melt. In this paper, the term ‘gas’ is used rather than ‘vapor’ except where specific to a phase relationship. Miscellaneous terms that are avoided here are ‘brine’ ( water close to saturation with salt) and ‘boiling’ which means phase separation due to continuous vigorous heating (as in a kettle), whereas phase separation in volcano-hosted hydrothermal systems occurs through simple processes as described in the text. The generic term fluid is used only in the context of fluid dynamics, i.e. how liquid, gas (or vapor) move through bodies of rock and otherwise sparingly as in convenient terms such as geothermal fluid where vapor and liquid phase properties are involved together.

  2. 2.

    Although having its roots in the Italian, solfo, meaning sulphur, the term, solfatara, is used broadly to refer to volcano and geothermal regimes characterised by acidic rock alteration and steam discharges. The term, fumarole, refers specifically to vents inside solfatara. In geothermal systems, these features are associated with shallow processes (Henley and Stewart 1983). In this chapter the emphasis on is much higher enthalpy and temperature solfatara and fumaroles directly related to the discharge of volcanic gas.

  3. 3.

    Heat flux is expressed as a unit of power; a megawatt (MWH) is equivalent to an energy flow of 106 J of heat per second.

  4. 4.

    Figure 8 charts phase boundaries and specific enthalpies for fluids in the NaCl–H2O system. The CO2 content of volcanic gases tends not to exceed a few mole percent and therefore contributes only a minor pressure effect on these systematics.

  5. 5.

    Any economic value for these metal sinks, as mineral deposits, is a consequence of higher order effects such as the specific geometry of transmissive fractures and bulk strength of host rocks as they evolve in the volcano-hosted hydrothermal systems environment. Do all these sinks occur within a continuum? Much speculation has attended this question primarily as an issue for exploration geologists. There are however only a few spatial and broadly temporal locations where economic porphyry and higher level Cu–As–Au mineralisation appears to be coincident.

References

  • Arribas A, Hedenquist JW, Itaya T, Okada T, Concepción RA, García JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 ka in Northern Luzon, Philippines. Geology 23:337–340

    Article  Google Scholar 

  • Bani P, Oppenheimer C, Allard P, Shinohara H, Tsanev V, Carn S, Lardy M, Garaebit E (2012) First estimate of volcanic SO2 budget for Vanuatu island arc. J Volcanol Geoth Res 211–212:36–46

    Article  Google Scholar 

  • Berger BR, Henley RW (2011) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: structural controls on hydrothermal alteration and ore mineralization. Ore Geol Rev 39:75–90

    Article  Google Scholar 

  • Berger BR, Henley RW, Lowers HA, Pribil MJ (2014) The Lepanto Cu–Au deposit, Philippines: a fossil hyperacidic volcanic lake complex. J Volcanol Geoth Res 271:70–82

    Google Scholar 

  • Botcharnikov RE, Shmulovich KI, Tkachenko SI, Korzhinsky MA, Rybin AV (2003) Hydrogen isotope geochemistry and heat balance of a fumarolic system: Kudriavy volcano, Kuriles. J Volcanol Geoth Res 124:45–66

    Article  Google Scholar 

  • Brackett RA, Fegley B, Arvidson RE (1995) Volatile transport on Venus and implications for surface geochemistry and geology. J Geophys Res 100:1553–1563

    Article  Google Scholar 

  • Brown CV (1917) The composition of seleniferous sulfur. Am Miner 2:116–117

    Google Scholar 

  • Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poas Crater lake: implications for predicting volcanic activity. Nature 339:370–373

    Article  Google Scholar 

  • Butterfield DA, Nakamura K, Takano B, Lilley M, Lupton JE, Resing JA, Row KK (2012) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39:803–806

    Article  Google Scholar 

  • Chouinard A, Williams-Jones A, Leonardson RW, Hodgson CJ, Silva P, Téllez C, Vega J, Rojas F (2005) Geology and genesis of the multistage high-sulfidation epithermal Pascua Au–Ag–Cu deposit, Chile and Argentina. Econ Geol 100:463–490

    Article  Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater lake, New Zealand. Bull Volcanol 55:547–565

    Article  Google Scholar 

  • Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker J, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater lake, New Zealand. J Volcanol Geoth Res 191:15–32

    Article  Google Scholar 

  • Churakov SV, Tkachenko SI, Korzhinskii MA, Bocharnikov RE, Shmulovich KI (2000) Evolution of composition of high-temperature fumarolic gases from Kudryavy Volcano, Iturup, Kuril Islands: the thermodynamic modeling. Geochem Int 38:436–451

    Google Scholar 

  • Clark AH (1970) An occurrence of the assemblage native sulfur–covellite–“Cu5. 5xFexS6. 5x”, Aucanquilcha. Chile Am Miner 55:913–918

    Google Scholar 

  • Cox SF (2005) Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Econ Geol 100th Anniversary Volume: 39–75

    Google Scholar 

  • Crerar D, Wood S, Brantley S, Bocarsly A (1985) Chemical controls on solubility of ore-forming minerals in hydrothermal solutions. Can Miner 23:333–352

    Google Scholar 

  • Cunningham CG, Austin GW, Naeser CW, Rye RO, Ballantyne GH, Stamm RG, Barker CE (2004) Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu–Au–Mo system, Utah. Econ Geol 99:789–806

    Article  Google Scholar 

  • De Ronde CEJ, Chadwick WW, Ditchburn RG, Embley RW, Tunnicliffe V, Baker ET, Walker SL, Ferrini VL, Merle SM (2014). Molten sulfur lakes of intraoceanic arc volcanoes, (this volume)

    Google Scholar 

  • Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58:2445–2460

    Article  Google Scholar 

  • Delmelle P, Bernard A (2014) The remarkable chemistry of sulfur in volcanic acid crater lakes: a scientific tribute to Bokuichiro Takano and Minoru Kusakabe, (this volume)

    Google Scholar 

  • Delmelle P, Henley RW, Opfergelt S (2014) Summit acid Crater lakes and flank instability in composite volcanoes, (this volume)

    Google Scholar 

  • Deyell CL, Bissig T, Rye RO (2004) Isotopic evidence for magmatic-dominated epithermal processes in the El Indio-Pascua Au–Cu–Ag Belt and relationship to geomorphologic setting. Soc Econ Geol Spec Publ 11:55–73

    Google Scholar 

  • Dolejs D, Manning CE (2010) Thermodynamic model for mineral solubility in aqueous fluids: theory, calibration and application to model fluid-flow systems. Geofluids 10:20–40

    Google Scholar 

  • Esposito LW (1984) Sulfur dioxide: episodic injection shows evidence for active Venus volcanism. Science 223:1072

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • González AG (1959) Geology and genesis of the Lepanto copper deposit, Mankayan, Mountain Province, Philippines. Ph.D. dissertation, Stanford University, 102 pp (Unpublished)

    Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bennie SL (2010) Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic zone New Zealand. Geophys Res Lett 37:L10301

    Google Scholar 

  • Heithersay PS, Walshe JL (1995) Endeavour 26 North: a Porphyr Copper-Gold deposit in the Late Ordovician, Shoshonitic Goonumbla Volcanic complex, New South Wales, Australia. Econ Geol 90:1506–1532

    Article  Google Scholar 

  • Henley RW (1996) Chemical and physical context for life in terrestrial hydrothermal systems: chemical reactors for the early development of life and hydrothermal ecosystems. In: Bock GR, Goode JA (eds) Evolution of hydrothermal ecosystems on Earth (and Mars). Wiley, New York, pp 61–82

    Google Scholar 

  • Henley RW, Berger BR (2000) Self-ordering and complexity in epizonal mineral deposits. Ann Rev Earth Planet Sci 28:669–719

    Article  Google Scholar 

  • Henley RW, Berger BR (2011) Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization. Ore Geol Rev 39:63–74

    Article  Google Scholar 

  • Henley RW, Berger BR (2012) Pyrite-sulfosalt reactions and semimetal fractionation in the Chinkuashih, Taiwan, copper-gold deposit: a 1 Ma paleo-fumarole. Geofluids 12:245–260

    Article  Google Scholar 

  • Henley RW, Berger BR (2013) Nature’s refineries—metals and metalloids in arc volcanoes. Earth Sci Rev 125:146–170

    Article  Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth-Sci Rev 19:1–50

    Article  Google Scholar 

  • Henley RW, McNabb A (1978) Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement. Econ Geol 73:1–20

    Article  Google Scholar 

  • Henley RW, Mavrogenes J, Tanner D (2012) Sulfosalt melts and heavy metal (As–Sb–Bi–Te–Sn–Pb–Tl) fractionation during volcanic gas expansion: the El Indio (Chile) paleo-fumarole. Geofluids 12:199–215

    Article  Google Scholar 

  • Henley RW, Stewart MK (1983) Chemical and isotopic changes in the hydrology of the Tauhara geothermal field due to exploitation at Wairakei. J Volcanol Geoth Res 15:285–314

    Article  Google Scholar 

  • Henley RW, Wykes, Jeremy, King, Penelope (2014) Sulfur In Degassing Volcanoes: thermochemistry and experiments, AGU fall meeting, San Francisco, Abstract V13D–06  

    Google Scholar 

  • Hinkley TK (1991) Distribution of metals between particulate and gaseous forms in a volcanic plume. Bull Volcanol 53:395–400

    Article  Google Scholar 

  • Huber C, Bachmann O, Vigneresse JL, Dufek J, Parmigiani A (2012) A physical model for metal extraction and transport in shallow magmatic systems. Geochem Geophys Geosyst 13. doi:10.1029/2012GC004042

  • Hunt JP (1977) Porphyry copper deposits. Geol Soc, London, Spec Publ 7:98

    Article  Google Scholar 

  • Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: Implications for volcanic processes in the Cascade Range. J Geophys Res 108(B12):1–19

    Article  Google Scholar 

  • Hurst AW, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu Crater Lake. J Volcanol Geoth Res 235–236:23–28

    Article  Google Scholar 

  • Ingebritsen SE, Mariner RH (2010) Hydrothermal heat discharge in the Cascade Range, Northwestern United States. J Volcanol Geoth Res 196:208–218

    Article  Google Scholar 

  • Jakubowski RT, Fournelle J, Welch S, Swope RJ, Camus P (2002) Evidence for magmatic vapor deposition of anhydrite prior to the 1991 climactic eruption of Mount Pinatubo, Philippines. Am Miner 87:1029–1045

    Google Scholar 

  • Kaltenegger L, Sasselov D (2009) Detecting planetary geochemical cycles on exoplanets: atmospheric signatures and the case of SO2. Astrophys J 708:1162

    Article  Google Scholar 

  • Kavalieris I (1994) High Au, Ag, Mo, Pb, V and W content of fumarolic deposits at Merapi volcano, central Java, Indonesia. J Geochem Explor 50:479–491

    Article  Google Scholar 

  • King, Penelope, Henley RW, Wykes, Jeremy, Renggli C, Troitzsch, Ulrike, Clark D, O’Neill H, (2014) The role of gas-silicate chemisorption reactions in modifying planetary crusts and surfaces, AGU fall meeting, San Francisco, Abstract V31A–4717

    Google Scholar 

  • Kim J, Lee KY, Kim JH (2011) Metal-bearing molten sulfur collected from a submarine volcano: implications for vapor transport of metals in seafloor hydrothermal systems. Geology 39:351–354

    Article  Google Scholar 

  • Lagache M, Weisbrod A (1977) The system: two alkali feldspars-KCl-NaCl-H2O at moderate to high temperatures and low pressures. Contrib Miner Petrol 62(1):77–101

    Google Scholar 

  • Liebscher A (2010) Aqueous fluids at elevated pressure and temperature. Geofluids 10:3–19

    Google Scholar 

  • Luhr JF (2008) Primary igneous anhydrite: progress since its recognition in the 1982 El Chichón trachyandesite. J Volcanol Geoth Rese 175:394–407

    Article  Google Scholar 

  • Manning CE (1994) The solubility of quartz in H20 in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Article  Google Scholar 

  • Mather TA, Pyle DM, Tsanev VI, McGonigle AJS, Oppenheimer C, Allen AG (2006) A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua. J Volcanol Geoth Res 149:297–311

    Article  Google Scholar 

  • Mavrogenes J, Henley RW, Reyes AG, Berger B (2010) Sulfosalt melts: evidence of high-temperature vapor transport of metals in the formation of high-sulfidation lode gold deposits. Econ Geol 105:257–262

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE (2013) A predictive model for metal transport of silver chloride by aqueous vapor in ore-forming magmatic-hydrothermal systems. Geochim Cosmochim Acta 104:123–135

    Article  Google Scholar 

  • Moore JN, Allis RG, Nemčok M, Powell TS, Bruton CJ, Wannamaker PE, Raharjo IB, Norman DI (2008) The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia. Am J Sci 308:1–48

    Article  Google Scholar 

  • Moses JI, Zolotov MY, Fegley B (2002) Photochemistry of a volcanically driven atmosphere on Io: Sulfur and oxygen species from a Pele-type eruption. Icarus 156:76–106

    Article  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  Google Scholar 

  • Nuccio PM, Paonita A, Sortino F (1999) Geochemical modeling of mixing between magmatic and hydrothermal gases: the case of Volcano Island, Italy. Earth Planet Sci Lett 167:321–333

    Article  Google Scholar 

  • Oppenheimer C, Scaillet B, Martin RS (2011) Sulfur degassing from volcanoes: source conditions, surveillance, plume chemistry and earth system impacts. Chapter 13 in Sulfur in Magmas and melts: its importance for natural and technical processes. In: Behrens H, Webster JD (eds) Reviews in mineralogy and geochemistry, vol 73, pp 363–421

    Google Scholar 

  • Pokrovski GS, Zakirov I, Roux J, Testemale D, Hazemann J-L, Bychkov AY, Golikova GV (2005) Experimental study of arsenic speciation in vapor phase to 500 ℃: implications for As transport and fractionation in low-density crustal fluids and volcanic gases. Geochim Cosmochim Acta 66:3453–3480

    Article  Google Scholar 

  • Pollard PJ, Taylor RG, Peters L (2005) Ages of intrusion, alteration, and mineralization at the Grasberg Cu–Au deposit, Papua, Indonesia. Econ Geol 100:1005–1020

    Article  Google Scholar 

  • Rouwet D, Tassi F (2011) Geochemical monitoring of volcanic lakes. A generalized box model for active Crater lakes. Ann Geophys 54:161–173

    Google Scholar 

  • Rowe GL (1991) The acid crater lake system of Poás Volcano, Costa Rica: geochemistry, hydrology, and physical characteristics. Ph.D. thesis. Pennsylvania State University, Pennsylvania

    Google Scholar 

  • Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys 46 RG4005. doi:10.1029/2007RG000244

  • Sillitoe RH (2005) Supergene oxidized and enriched porphyry copper and related deposits. In: Heddenquist JW, Thompson JFH, Goldfarb RJ (eds) Economic Geology One Hundredth Anniversary Volume, pp 723–768

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–42

    Article  Google Scholar 

  • Stern RJ, Kohut E, Bloomer SH, Leybourne M, Fouch M, Vervoort J (2006) Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important? Contrib Miner Petrol 151(2):202–221

    Article  Google Scholar 

  • Sriwana T, Van Bergen MJ, Varekamp JC, Sumarti S, Takano B, Van Os BJH, Leng MJ (2000) Geochemistry of the acid Kawah Putih lake, Patuha volcano, West Java, Indonesia. J Volcanol Geoth Res 97:77–104

    Article  Google Scholar 

  • Symonds RB, Rose WI, Gerlach TM, Briggs PH, Harmon RS (1990) Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system. Bull Volcanol 52:355–374

    Article  Google Scholar 

  • Takano B, Saitoh H, Takano E (1994) Geochemical implications of subaqueous molten sulfur at Yugama Crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216

    Article  Google Scholar 

  • Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen Crater lake, East Java, Indonesia. J Volcanol Geoth Res 135:299–329

    Article  Google Scholar 

  • Takano B, Kuno A, Ohsawa S, Kawakami H (2008) Aqueous sulfur speciation possibly linked to sublimnic volcanic gas-water interaction during a quiescent period at Yugama Crater lake, Kusatsu-Shirane volcano, Central Japan. J Volcanol Geoth Res 178:145–168

    Article  Google Scholar 

  • Taran YA (2009) Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka-Kuril subduction zone. Geochim Cosmochim Acta 73:1067–1094

    Article  Google Scholar 

  • Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril Islands. Geochim Cosmochim Acta 59:1749–1761

    Article  Google Scholar 

  • Taran YA, Bernard B, Gavilanes J-C, Africano F (2000) Native gold in mineral precipitants from high temperature volcanic gases of Colima volcano, Mexico. Appl Geochem 15:337–346

    Article  Google Scholar 

  • Taran YA, Bernard A, Gavilanes JC, Lunezheva E, Cortes A, Armienta MA (2001) Chemistry and mineralogy of high-temperature gas discharges from Colima volcano, Mexico. Implications for magmatic gas–atmosphere interaction. J Volcanol Geoth Res 108:245–264

    Article  Google Scholar 

  • Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico: Implications for monitoring of the volcanic activity. J Volcanol Geoth Res 178:224–236

    Article  Google Scholar 

  • Terada A, Hashimoto T, Kagiyama T (2012) A water flow model of the active crater lake at Aso volcano, Japan: fluctuations of magmatic gas and groundwater fluxes from the underlying hydrothermal system. Bull Volcanol 74:641–655

    Article  Google Scholar 

  • van Hinsberg V, Berlo K, Sumarti S, Van Bergen M, Williams-Jones A (2010) Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: II: metasomatic imprint and element fluxes. J Volcanol Geoth Res 196:169–184

    Article  Google Scholar 

  • Varekamp JC, Pasternack GB, Rowe GL (2000) Volcanic lake systematics II chemical constraints. J Volcanol Geoth Res 97:161–179

    Article  Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:208–220

    Article  Google Scholar 

  • Varley NR, Taran YA (2003) Degassing processes of Popocatépetl and Volcán de Colima, Mexico. In Oppenheimer C (ed) Volcanic Degassing, vol 213. Geological Society, London Special Publication, pp 263–280

    Google Scholar 

  • Vigneresse JL (2012) Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation. Lithos. doi:10.1016/j.lithos.2012.03.014

  • Wallace PJ, Edmonds M (2011) The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Mineral Geochem 73:215–246

    Article  Google Scholar 

  • Webster JD, Botcharnikov RE (2011) Distribution of sulfur between melt and fluid in SOHC–Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Miner Geochem 73:247–283

    Article  Google Scholar 

  • Williams-Jones G, Stix J, Heiligmann M, Charland A, Sherwood-Lollar B, Arner N, Garzón G, Barquero J, Fernández E (2000) A model of diffuse degassing at three subduction-related volcanoes. Bull Volcanol 62:130–142

    Article  Google Scholar 

  • Williams-Jones G, Stix J, Hickson C (2008) The COSPEC cookbook: making SO2 measurements at active volcanoes. IAVCEI, Meth Volcanol 1:233

    Google Scholar 

  • Williams-Jones G, Vigouroux-Caillibot N, van Hinsberg V, Williams-Jones A (2010) Application of the multiGAS sensor to geothermal exploration and monitoring: comparison of plume and fumarole gas compositions at Kawah Ijen Volcano Indonesia. AGU Fall Meet Abstr 1:2

    Google Scholar 

  • Yudovskaya MA, Distler VV, Chaplyygin IV, Mokhov AV, Trubkin NV, Gorbacheva SA (2006) Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands. Miner Deposita 40:828–848

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Heinrich CA, Guillong M (2010) Alkali metals control the release of gold from volatile-rich magmas. Earth Planet Sci Lett 297:50–56

    Article  Google Scholar 

  • Zajacz Z, Seo JH, Candela PA, Piccoli PM, Tossell JA (2011) The solubility of copper in high temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochim Cosmochim Acta 75:2811–2827

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank Richard Arculus, Barney Berger, Bruce Christenson, Pierre Delmelle, Penny King, Gary Rowe, Tarun Whan and Jeremy Wykes for enthusiastic discussions and constructive comments. I am also grateful to Bruce for providing this opportunity to consider some of the geochemical problems posed by hyperacidic lakes. Bali-based landscape photographer, Jessy Eykendorp, very kindly gave permission for reproduction of her Kawah Ijen photograph. I thank Frank Brink for guidance in FESEM methodology. I also want to thank my wife, Meg, for patience and cheerful forbearance through 50 years of geology!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Henley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henley, R.W. (2015). Hyperacidic Volcanic Lakes, Metal Sinks and Magmatic Gas Expansion in Arc Volcanoes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_6

Download citation

Publish with us

Policies and ethics