Skip to main content

Microbial Life in Volcanic Lakes

  • Chapter
  • First Online:

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Lakes in the craters of active volcanoes and their related streams are often characterised by conditions considered extreme for life, such as high temperatures, low pH and very high concentrations of dissolved metals and minerals. Such lakes tend to be transient features whose geochemistry can change markedly over short time periods. They might also vanish completely during eruption episodes or by drainage through the crater wall or floor. These lakes and their effluent streams and springs host taxonomically and metabolically diverse microorganisms belonging in the Archaea, Bacteria, and Eucarya. In volcanic ecosystems the relation between geosphere and biosphere is particularly tight; microbial community diversity is shaped by the geochemical parameters of the lake, and by the activities of microbes interacting with the water and sediments. Sampling these lakes is often challenging, and few have even been sampled once, especially in a microbiological context. Developments in high-throughput cultivation procedures, single-cell selection techniques, and massive increases in DNA sequencing throughput, should encourage efforts to define which microbes inhabit these features and how they interact with each other and the volcano. The study of microbial communities in volcanic lake systems sheds light on possible origins of life on early Earth, or on extraterrestrial systems. Other potential outcomes include the development of microbial inocula to promote plant growth in altered or degraded soils, bioremediation of contaminated waste or land, and the discovery of enzymes or other proteins with industrial or medical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J Bacteriol 172:762–770

    Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Google Scholar 

  • Arnold HP, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Weidmann JF, Kristjanson JK, Klenk HP, Nelson KE, Fraser CM (2000) A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267:252–266

    Google Scholar 

  • Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262

    Google Scholar 

  • Baret J-C, Miller OJ, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels ML, Hutchison JB, Agresti JJ, Link DR, Weitz DA, Griffiths AD (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9:1850–1858

    Google Scholar 

  • Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20

    Google Scholar 

  • Bibring J-P, Arvidson RE, Gendrin A, Gondet B, Langevin Y, Le Mouelic S et al (2007) Coupled ferric oxides and sulfates on the martian surface. Science 317:1206–1210

    Google Scholar 

  • Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, D’Acqui LP, Solheim B, Turicchia S, Marasco R, Hinrichs KU, Baldi F, Adani F, Daffonchio D (2009) Rock weathering creates oasis of life in a high Arctic desert. Environ Microbiol 12:293–303

    Google Scholar 

  • Bowman JP, Rea SM, Brown MV, McCammon SA, Smith MC, McMeekin TA (1999) Community structure and psychrophily in Antarctic microbial ecosystems. In: Bell CR, Brylinsky M, Johnson-Green M (eds) Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium on Microbial Ecology, vol 1. Atlantic Canada Society for Microbial Ecology, Kentville, Nova Scotia, Canada, pp 287–292

    Google Scholar 

  • Cabrol NA, Grin EA, Chong G, Minkley E, Hock AN, Yu Y, Bebout L, Fleming E, Häder DP, Demergasso C, Gibson J, Escudero L, Dorador C, Lim D, Woosley C, Morris RL, Tambley C, Gaete V, Galvez ME, Smith E, Ukstins Peate I, Salazar S, Dawidowicz G, Majerowicz J (2009) The high-lakes project. J Geophys Res 114 G00D06. doi:10.1029/2008JG000818

  • Certes A (1884) Sur la culture, a l’abri des germes atmospheriques, des eaux et des sediments rapportes par les expeditions der Travailleur et du Talisman. Compt Rend Acad Sci 98:690–693

    Google Scholar 

  • Chen CH, Cho SH, Tsai F, Erten A, Lo YH (2009) Microfluidic cell sorter with integrated piezoelectric actuator. Biomed Microdevices 11:1223–1231

    Google Scholar 

  • Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2010) First assessment of acidophilic microorganisms from geothermal Copahue-Caviahue system. Hydrometallurgy 104:334–341

    Google Scholar 

  • Colwell RR, Grimes DJ (2000) Semantics and strategies. In: Colwell RR, Grimes DJ (eds) Nonculturable microorganisms in the environment. ASM Press, Washington, DC, pp 1–6

    Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Google Scholar 

  • Demergasso C, Dorador C, Meneses D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high‐altitude ecosystems of the Chilean Altiplano. J Geophys Res 115 G00D09. doi:10.1029/2008JG000836

  • D’Imperio S, Lehr CR, Oduro H, Druschel G, Kuhl M, McDermott TR (2008) The relative importance of H2 and H2S as energy sources for primary production in geothermal springs. Appl Environ Microbiol 74:5802–5808

    Google Scholar 

  • Doemel WN, Brock TD (1971) The physiological ecology of Cyanidium caldarium. Microbiology 67:17–32

    Google Scholar 

  • Donachie SP (1996) A seasonal study of marine bacteria in Admiralty Bay (Antarctica). Proc NIPR Symp Polar Biol 9:111–124

    Google Scholar 

  • Donachie SP, Christenson B, Kunkel DD, Malahoff A, Alam M (2002) Microbial community in acidic hydrothermal waters of volcanically active White Island, New Zealand. Extremophiles 6:419–425

    Google Scholar 

  • Donachie SP, Hou S, Gregory TS, Malahoff A, Alam M (2003) Idiomarina loihiensis, sp. nov., a new halophilic γ-Proteobacterium isolated from the Lō‘ihi submarine volcano, Hawai‘i. Int J Syst Evol Microbiol 53:1873–1879

    Google Scholar 

  • Donachie SP, Hou S, Lee K-S, Riley CW, Pikina A, Belisle C, Kempe S, Gregory TS, Bossuyt A, Boerema J, Liu J, Freitas TA, Malahoff A, Alam M (2004) The Hawaiian Archipelago: a microbial diversity hotspot. Microb Ecol 48:509–520

    Google Scholar 

  • Donachie SP, Foster JS, Brown MV (2007) Culture clash: challenging the dogma of microbial diversity. ISME J 1:97–102

    Google Scholar 

  • Donati E, Curutchet G, Pogliani C, Tedesco P (1996) Bioleaching of covellite using pure and mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Process Biochem 31:129–134

    Google Scholar 

  • DeSantis TZ, Dubosarskiy I, Murray SR, Andersen GL (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19:1461–1468

    Google Scholar 

  • Escudero L, Chong G, Demergasso C, Farías ME, Cabrol NA, Grin E, Minkley E Jr, Yu Y (2007) Investigating microbial diversity and UV radiation impact at the high-altitude Lake Aguas Calientes, Chile. Proc SPIE 6694:66940Z

    Google Scholar 

  • Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572

    Google Scholar 

  • Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore M, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344

    Google Scholar 

  • Gaidos E, Marteinsson V, Thorsteinsson T, Johannesson T, Rafnsson AR, Stefansson A, Glazer B, Lanoil B, Skidmore M, Han S, Miller M, Rusch A, Foo W (2008) An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J 3:486–497

    Google Scholar 

  • Garrido P, González-Toril E, García-Moyano A, Moreno-Paz M, Amils R, Parro V (2008) An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA. Environ Microbiol 10:836–850

    Google Scholar 

  • Geller W, Schultze M (2009) Acidification. In: Likens GE (ed) Encyclopedia of Inland Waters. Elsevier, Oxford, pp 1–12

    Google Scholar 

  • Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, Pyrococcus abyssi. J Bacteriol 185:3888–3894

    Google Scholar 

  • Giaveno A, Huergo J, Lavalle L, Sand W, Donati E (2009a) Molecular and morphological characterization of cultures from the extreme environmental area of Copahue Volcano-Argentina. Adv Mat Res 71–73:93–96

    Google Scholar 

  • Giaveno A, Chiacchiarini P, Cordero C, Lavalle L, Huergo J, Donati E (2009b) Oxidative capacity of native strains from Copahue geothermal system in the pretreatment of a gold sulfide ore. Adv Mat Res 71–73:473–476

    Google Scholar 

  • Giovannoni S, Stingl U (2007) Opinion: the importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826

    Google Scholar 

  • Gómez F, Parro V (2012) Applications of extremophiles in astrobiology: habitability and life detection strategies. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes. Springer, Wien, pp 199–229

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Google Scholar 

  • Harrison AP (1981) Acidiphilium cryptum, gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bact 31:327–332

    Google Scholar 

  • Ho CT, Lin RZ, Chang HY, Liu CH (2005) Micromachined electrochemical T-switches for cell sorting applications. Lab Chip 5:1248–1258

    Google Scholar 

  • Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58

    Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    Google Scholar 

  • Janekovic D, Wunderl S, Holz I, Zillig W, Gierl A, Neumann H (1983) TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur-reducing archaebacterium Thermoproteus tenax. Mol Gen Genet 192:39–45

    Google Scholar 

  • Jóhannesson T, Thorsteinsson T, Stefánsson A, Gaidos EJ, Einarsson B (2007) Circulation and thermodynamics in a subglacial geothermal lake under the Western Skaftá cauldron of the Vatnajökull ice cap, Iceland. Geophys Res Lett 34:L19502

    Google Scholar 

  • Johnson D (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 23:205–218

    Google Scholar 

  • Kaiser O, Pühler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of Oilseed Rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    Google Scholar 

  • Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, Salamov A, Grigoriev IV, Suciu D, Levine SR, Markowitz VM, Rigoutsos I, Tringe SG, Bruce DC, Richardson PM, Lidstrom ME, Chistoserdova L (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotechnol 26:1029–1034

    Google Scholar 

  • Kang Y, Norris MH, Zarzycki-Siek J, Nierman WC, Donachie SP, Hoang TT (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21:925–935

    Google Scholar 

  • Karl DM, Brittain AM, Tilbrook BD (1989) Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep Sea Res 36:1655–1673

    Google Scholar 

  • Karner M, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    Google Scholar 

  • Kimura N (1983) The neutral theory of molecular evolution. Cambridge University Press, New York, p 384

    Google Scholar 

  • Kircher M, Kelso J (2010) High-throughput DNA sequencing—concepts and limitations. BioEssays 32:524–536

    Google Scholar 

  • Kleinschmidt MG, McMahon VA (1970) Effect of growth temperature on the lipid composition of Cyanidium caldarium. Plant Physiol 46:286–289

    Google Scholar 

  • Klingelhofer G, Morris RV, Bernhardt B, Schroder C, Rodionov CS, de Souza PA Jr et al (2004) Jarosite and hematite at meridiani planum from opportunity’s mössbauer spectrometer. Science 306:1740–1745

    Google Scholar 

  • Koschorreck M, Wendt-Potthoff K, Scharf B, Richnow HH (2008) Methanogenesis in the sediment of the acidic Lake Caviahue in Argentina. J Volcanol Geoth Res 178:197–204

    Google Scholar 

  • Kovac JR, Voldman J (2007) Intuitive, image-based cell sorting using opto-fluidic cell sorting. Anal Chem 79:9321–9330

    Google Scholar 

  • Krüger J, Singh K, O’Neill A, Jackson C, Morrison A, O’Brien P (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12:486–494

    Google Scholar 

  • Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Appl Environ Microbiol 12:118–123

    Google Scholar 

  • Lavalle L, Chiacchiarini P, Pogliani C, Donati E (2005) Isolation and characterization of acidophilic bacteria from Patagonia, Argentina. Process Biochem 40:1095–1099

    Google Scholar 

  • Liu B, Zhang X (2008) Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions. Appl Microbiol Biotechnol 80:697–707

    Google Scholar 

  • Löhr AJ, Laverman AM, Braster M, van Straalen NM, Röling WFM (2006a) Microbial communities in the world’s largest acidic volcanic lake, Kawah Ijen in Indonesia, and in the Banyupahit river originating from it. Microb Ecol 52:609–618

    Google Scholar 

  • Löhr AJ, Sluik R, Olaveson MM, Ivorra N, Van Gestel CAM, Van Straalen NM (2006b) Macroinvertebrate and algal communities in an extremely acidic river and the Kawah Ijen crater lake (pH < 0.3), Indonesia. Arch Hydrobiol 165:1–21

    Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas K (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Google Scholar 

  • Macelroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75

    Google Scholar 

  • Martínez M, Fernández E, Valdés J, Barboza V, van der Laat R, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poás volcano, Costa Rica, 1993–1997. J Volcanol Geoth Res 97:127–141

    Google Scholar 

  • Martínez M, Mason P, van Bergen M, Fernández E, Duarte E, Malavassi E, Barquero J and Valdés J (2002) Chemistry of sulphur globules from the acid crater lake of Poás Volcano, Costa Rica. In: Proceedings of Colima volcano international meeting, 2002, Colima

    Google Scholar 

  • Moisander PH, Shiue L, Steward GF, Jenkins BD, Bebout BM (2006) Application of a nifH oligonucleotide microarray for profiling diversity of N2-fixing microorganisms in marine microbial mats. Environ Microbiol 8:1721–1735

    Google Scholar 

  • Morris RM, Rappe MS, Urbach E, Connon SA, Giovannoni SJ (2004) Prevalence of the Chloroflexi related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl Environ Microbiol 70:2836–2842

    Google Scholar 

  • Munson MA, Pitt-Ford T, Chong B, Weightman A, Wade WG (2002) Molecular and cultural analysis of the microflora associated with endodontic infections. J Dent Res 81:761–766

    Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  • Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14

    Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341

    Google Scholar 

  • Ouverney CC, Fuhrman JA (1999) Combined microautoradiography-16S rRNA probe technique for the determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:1746–1752

    Google Scholar 

  • Ouverney CC, Fuhrman JA (2000) Marine planktonic Archaea take up amino acids. Appl Environ Microbiol 66:4829–4833

    Google Scholar 

  • Palleroni NJ (1997) Prokaryotic diversity and the importance of culturing. Antonie von Leeuwenhoek 72:3–19

    Google Scholar 

  • Parker SR, Gammons CH, Pedrozo FL, Wood SA (2008) Diel changes in metal concentrations in a geogenically acidic river: rio agrio, Argentina. J Volcanol Geoth Res 178:213–223

    Google Scholar 

  • Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:528–538

    Google Scholar 

  • Peiffer L, Taran YA, Lounejeva E, Solís-Pichardo G, Rouwet D, Bernard-Romero RA (2011) Tracing thermal aquifers of El Chichón volcano–hydrothermal system (México) with 87Sr/86Sr, Ca/Sr and REE. J Volcanol Geoth Res 205:55–66

    Google Scholar 

  • Porro S, Boiardi JL, Tedesco PH (1989) Bioleaching improvement at pH 1.4 using selected strains of Thiobacillus ferrooxidans. Biorecovery 1:145–154

    Google Scholar 

  • Queck SY, Otto M (2008) Staphylococcus epidermidis and other coagulase-negative Staphylococci. In: Lindsay J (ed) Staphylococcus: Molecular Genetics. Caister Academic Press, Norfolk, pp 227–254

    Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation? Environ Poll 144:976–984

    Google Scholar 

  • Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    Google Scholar 

  • Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci USA 98:13341–13345

    Google Scholar 

  • Rodríguez-Valera F (2002) Approaches to prokaryotic biodiversity: a population genetics perspective. Environ Microbiol 4:628–633

    Google Scholar 

  • Satake K, Saijo Y (1974) Carbon dioxide content and metabolic activity of microorganisms in some acid lakes in Japan. Limnol Oceanogr 19:331–338

    Google Scholar 

  • Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995) Life at extremely low pH. Nature 375:741–742

    Google Scholar 

  • Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378

    Google Scholar 

  • Shawkey MD, Mills KL, Dale C, Hill GE (2005) Microbial diversity of wild bird feathers revealed through cultured-based and culture-independent techniques. Microb Ecol 50:40–47

    Google Scholar 

  • Short SM, Suttle CA (2002) Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol 68:1290–1296

    Google Scholar 

  • Snyder JC, Stedman K, Rice G, Wiedenheft B, Spuhler J, Young MJ (2003) Viruses of hyperthermophilic Archaea. Res Microbiol 154:474–482

    Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR et al (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120

    Google Scholar 

  • Sonne-Hansen J, Ahring BK (1997) Anaerobic microbiology of an alkaline Icelandic hot spring. FEMS Microbiol Ecol 23:31–38

    Google Scholar 

  • Stackebrandt E, Ludwig W, Fox GE (1985) 16S ribosomal RNA oligonucleotide cataloguing. In: Gottschalk G (ed) Methods in microbiology. Academic Press, London, pp 75–107

    Google Scholar 

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Google Scholar 

  • Suzuki MT, Rappé MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, Giovannoni SJ (1997) Bacterial diversity among SSU rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989

    Google Scholar 

  • Takano B, Ohsawa S, Glover RB (1994a) Surveillance of Ruapehu Crater Lake, New Zealand, by aqueous polythionates. J Volcanol Geoth Res 60:29–57

    Google Scholar 

  • Takano B, Saitoh H, Takano E (1994b) Geochemical implications of subaqueous molten at Yugama crater lake, Kusatsu-Shirane volcano, Japan. Geochem J 28:199–216

    Google Scholar 

  • Takano B, Koshida M, Fujiwara Y, Sugimori K, Takayanagi S (1997) Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry 38:227–253

    Google Scholar 

  • Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci USA 69:2426–2428

    Google Scholar 

  • Teske A, Sigalevich P, Cohen Y, Muyzer G (1996) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl Environ Microbiol 62:4210–4215

    Google Scholar 

  • Thorsteinsson T, Elefsen SO, Gaidos E, Lanoil B, Jóhannesson T, Kjartansson V, Marteinsson VP, Stefánsson A, Thorsteinsson T (2008) A hot water drill with built-in sterilization: design, testing and performance. Jökull 57:71–82

    Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allenn EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324

    Google Scholar 

  • Urbieta MS, González Toril E, Aguilera A, Giaveno MA, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an Acidic River in Neuquén, Argentina. Microb Ecol. doi:10.1007/s00248-011-9997-2

  • Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254

    Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Google Scholar 

  • Wendt-Potthoff K, Koschorreck M (2002) Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Microb Ecol 43:92–106

    Google Scholar 

  • Wilson MJ, Weightman AJ, Wade WG (1997) Applications of molecular ecology in the characterisation of uncultured microorganisms associated with human disease. Rev Med Microbiol 8:91–101

    Google Scholar 

  • Woelfl S, Whitton BA (2000) Sampling, preservation and quantification of biological samples from highly acidic environments (pH ≤ 3). Hydrobiologia 433:173–180

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Xu H-S, Roberts N, Singleton FL, Atwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323

    Google Scholar 

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686

    Google Scholar 

  • Zillig W, Prangishvili D, Schleper C, Elferink M, Holz I, Albers S, Janekovic D, Goetz D (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stuart Donachie or Sara Borin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mapelli, F., Marasco, R., Rolli, E., Daffonchio, D., Donachie, S., Borin, S. (2015). Microbial Life in Volcanic Lakes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_23

Download citation

Publish with us

Policies and ethics