Skip to main content

Volcano-Hydrologic Hazards from Volcanic Lakes

  • Chapter
  • First Online:
Volcanic Lakes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Volcanic regions typically host multiple lakes developed in explosion craters, volcano-tectonic collapse structures, and valley systems blocked as a result of eruptive activity, their boundaries and dimensions shifting in response to renewed activity and modification by background processes of erosion, sedimentation and tectonism. Such water bodies are a potent source of a wide range of complex and inter-related hydrologic hazards owing to their proximity to active volcanic vents, the consequent potential for violent mixing of magma with water, and the frequent fragility of their impoundments. These hazards arise as a result of water displacements within or from the lake basin and can be broadly sub-divided into 3 main types: (I) phenomena sourced within the lake basin as a direct or indirect consequence of subaqueous or subaerial volcanic activity; (II) floods from volcanic lakes triggered by volcanic activity, including induced breaching; and (III) floods from volcanic lakes with a non-volcanic cause. Type I hazards include subaqueous explosive volcanism and associated Surtseyan jets, base surges and tsunamis, which can impact lake shorelines and displace water over basin rims and through outlets. This results in Type II lahar and flooding hazards. Both types have been historically responsible for significant losses of life at many volcanoes worldwide. Other rapid phenomena such as pyroclastic flows, debris avalanches, and large lahars from intra- or extra-lake volcanoes are potentially tsunamigenic (Type I), and/or displacing, and can hence also lead to secondary (Type II) hazards, as can seismicity-producing volcano-tectonic movements. Slower processes including volcano-tectonic movements, subaqueous lava dome extrusion, cryptodome intrusion, and magmatic inflation can potentially produce Type II flooding through volumetric water displacement over the outlet. Erosion of the outlet can be catastrophic, magnifying the size of flood events. Damming of the outlet itself can result in backflooding of the basin. Type III hazards, i.e. volcanic lake break-out floods; result from breaching of the barrier constraining a volcanic lake as a result of passive overtopping, piping, mechanical failure, or headward erosion of the natural dam. Such events range in scale from relatively minor outflows triggered by failure of crater walls or the breaching of riverine dams composed of pyroclastic, volcaniclastic, or lava flow material to catastrophic floods generated by the breaching of caldera rims. Palaeohydraulic reconstructions of some of the latter indicate that they are amongst the largest post-glacial floods on Earth, being exceeded only by late Pleistocene deluges associated with breaching of ice-dammed lakes and pluvial basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aka FT, Yokoyama T (2013) Current status of the debate about the age of Lake Nyos dam (Cameroon) and its bearing on potential flood hazards. Nat Hazards 65:875–885

    Google Scholar 

  • Almberg LD, Beget JE, Larsen JF (2003) Magmatic production rate determined by volcaniclastic lithofacies variations in a rapidly fluctuating caldera lake, Okmok Volcano, Alaska. In: Proceedings and abstract volume of IUGG 2003 Congress, Sapporo, Japan: A. p 519

    Google Scholar 

  • Anderson TR, Flett JS (1903) Report on the eruptions of the Soufriere, in St. Vincent in 1902, and on a visit to Montagne Pelee, Martinique—part 1. Philos Trans Roy Soc Ser A 200:353–553

    Google Scholar 

  • Aramaki S (1956) The 1783 activity of Asama volcano, part 1. Jpn J Geol Geogr XXVII(2–4):189–229

    Google Scholar 

  • Aramaki S (1981) The sequence and nature of 1783 eruption of Asama volcano. In: Abstracts of the symposium on Arc Volcanism, Tokyo and Hakone-Machi, Japan, pp 11–12

    Google Scholar 

  • Arboleda RA, Martinez MML (1996) 1992 lahars in the Pasig-Potrero river system. In: Newhall CG, Punongbayan RS (eds) Fire and Mud, eruptions and lahars of Mount Pinatubo. University of Washington Press, Seattle, Philippines, pp 1045–1052

    Google Scholar 

  • Auker MR, Sparks RSJ, Siebert L, Crossweller HS, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2. doi:10.1186/2191-5040-2-2

  • Baales M, Jöris O, Street M, Bittman F, Wninger B, Wiethold J (2002) Impact of the late glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quatern Res 58:273–288

    Google Scholar 

  • Bani P, Join J-L, Cronin SJ, Lardy M, Rouet I, Garaebiti E (2009) Characteristics of the summit lakes of Ambae volcano and their potential for generating lahars. Nat Hazards Earth Syst Sci 9:1471–1478

    Google Scholar 

  • Barberi F, Chelini W, Marinelli G, Martini M (1989) The gas cloud of Lake Nyos (Cameroon, 1986): results of the Italian technical mission. J Volcanol Geoth Res 39:125–134

    Google Scholar 

  • Batiza R, White JDL (2000) Submarine lavas and hyaloclastite. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 361–381

    Google Scholar 

  • Beck AC (1950) Volcanic activity at Mt. Ruapehu from August to December, 1945. NZ J Sci Technol B31:1–13

    Google Scholar 

  • Becker J, Manville V, Leonard G, Saunders W (2008) Managing lahars the New Zealand way: a case study from Mount Ruapehu volcano. Natural Hazards Observer XXXII(5):4–6

    Google Scholar 

  • Begét JE, Larsen JF, Neal CA, Nye CJ, Schaefer JR (2005) Preliminary volcano-hazard assessment of Okmok volcano, Umnak Island, Alaska. Alaska department of natural resources, division of geological and geophysical surveys, report of investigations 2004-3, 32 p

    Google Scholar 

  • Begét JE, Gardner C, Davis K (2008) Volcanic tsunamis and prehistoric cultural transitions in Cook Inlet, Alaska. J Volcanol Geoth Res 176:377–386

    Google Scholar 

  • Belousov A, Belousov M (2001) Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake, Kamchatka, Russia. In: White JDL, Riggs NR (eds) Volcanogenic sedimentation in lacustrine settings. International Association of Sedimentologists, Special Publication, vol 30, pp 35–60

    Google Scholar 

  • Belousov A, Voight B, Belousova M, Muravyev Y (2000) Tsunamis generated by subaquatic volcanic explosions: unique data from 1996 eruption in Karymskoye Lake, Kamchatka, Russia. Pure Appl Geophys 157:1135–1143

    Google Scholar 

  • Björnsson H (1975) Subglacial water reservoirs, jökulhlaups and volcanic eruptions. Jökull 25:1–14

    Google Scholar 

  • Björnsson H (1992) Jökulhlaups in Iceland: prediction, characteristics and simulation. Ann Glaciol 16:95–106

    Google Scholar 

  • Björnsson H (2002) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Change 35:255–271

    Google Scholar 

  • Bornas MA, Tungol N, Maximo RPR, Paladio-Melosantos ML, Mirabueno HT, Javier DV, Corpuz EG, Dela Cruz EG, Ramos AF, Marilla JD, Villacorte EU (2003) Caldera-rim breach and lahar from Mt. Pinatubo, Philippines: natural breaching and resulting lahar. In: Proceedings and abstract volume of IUGG 2003 Congress, Sapporo, Japan A, p 558

    Google Scholar 

  • Capra L (2007) Volcanic natural dams: identification, stability, and secondary effects. Nat Hazards 43:45–61

    Google Scholar 

  • Capra L, Macías JL (2002) The cohesive Naranjo debris-flow deposit (10 km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima Volcano (México). J Volcanol Geoth Res 117:213–235

    Google Scholar 

  • Carey S, Sigurdsson H, Mandeville C, Bronto S (1996) Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volc 57:493–511

    Google Scholar 

  • Carey S, Sigurdsson H, Mandeville C, Bronto S (2000) Volcanic hazards from pyroclastic flow discharge into the sea: examples from the 1883 eruption of Krakatau, Indonesia. In: McCoy FW, Heiken G (eds) Volcanic hazards and disasters in human antiquity. Geological Society of America, Special Publication, vol 345, pp 1–14

    Google Scholar 

  • Carey S, Morelli D, Sigurdsson H, Bronto S (2001) Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. Geology 29:347–350

    Google Scholar 

  • Carrivick JL, Russell AJ, Tweed FS, Twigg D (2004) Palaeohydrology and sedimentary impacts of jökulhlaups from Kverkfjöll, Iceland. Sed Geol 172:19–40

    Google Scholar 

  • Carrivick JL, Manville V, Cronin SJ (2009) A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu. NZ Bull Volcanol 71:153–169

    Google Scholar 

  • Casadevall TJ, de la Cruz-Reyna S, Rose WI, Bagley S, Finngean DL, Zollwer WH (1984) Crater lake and post-eruption hydrothermal activity, El Chichón volcano, Mexico. J Volcanol Geoth Res 23:169–191

    Google Scholar 

  • Catane SG, Taniguchi H, Goto A, Givero AP, Mandanas AA (2005) Explosive volcanism in the Philippines. CNEAS monograph series. Centre for Northeast Asian studies, Tohuku University, Tohuku, 146 p

    Google Scholar 

  • Chesner CA, Rose WI (1991) Stratigraphy of the Toba tuffs and the evolution of the Toba caldera Complex, Sumatra, Indonesia. Bull Volcanol 53:343–356

    Google Scholar 

  • Chiocci FL, Romagnoli C, Tomassi P, Bosman A (2008) The Stromboli 2002 tsunamigenic submarine slide: characteristics and possible failure mechanisms. J Geophys Res 113:B10102

    Google Scholar 

  • Chitwood L, Jensen R (2000) Large prehistoric flood along Paulina Creek. In: Jensen R, Chitwood L (eds) What’s new at Newberry volcano, Oregon. USDA Forest Services, Bend, Oregon, pp 31–40

    Google Scholar 

  • Chrétien S, Brousse R (1989) Events preceding the great eruption of 8 May, 1902 at Mount Pelée, Martinique. J Volcanol Geoth Res 38:67–75

    Google Scholar 

  • Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geoth Res 97:1–30

    Google Scholar 

  • Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu Crater Lake, New Zealand. Bull Volc 55:547–565

    Google Scholar 

  • Christenson BW, Reyes AG, Young R, Moebis A, Sherburn S, Cole-Baker JC, Britten K (2010) Cyclic processes and factors leading to phreatic eruption events: insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. J Volcanol Geoth Res 191:15–32

    Google Scholar 

  • Clarke GKC (2003) Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation. J Glaciol 49:299–313

    Google Scholar 

  • Cole RH (1948) Underwater explosions. Princeton University Press, Princeton 437 p

    Google Scholar 

  • Conaway J (2000) Hydrogeology and paleohydrology in the Williamson River Basin, Klamath County, Oregon. Unpublished M.Sc. thesis, department of geology. Portland State University, Portland, 117 p

    Google Scholar 

  • Córtes A, Macías JL, Capra L, Garduño-Monroy VH (2010) Sector collapse of the SW flank of Volcán de Colima, México: the 3600 yr BP La Lumbre-Los Ganchos debris avalanche and associated debris flows. J Volcanol Geoth Res 197:52–66

    Google Scholar 

  • Costa, J. E. 1985. Floods from dam failures. USGS Open-file report 85-560, 54 p

    Google Scholar 

  • Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows and debris flows. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 113–122

    Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100:1054–1068

    Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Palmer AS (1996) Unusual “snow slurry” lahars from Ruapehu volcano, New Zealand, September 1995. Geology 24:1107–1110

    Google Scholar 

  • Cronin SJ, Neall VE, Lecointre JA, Palmer AS (1997) Changes in Whangaehu River lahar characteristics during the 1995 eruption sequence, Ruapehu volcano, New Zealand. J Volcanol Geoth Res 76:47–61

    Google Scholar 

  • Crow R, Karlstrom KE, McIntosh WC, Peters L, Dunbar NW (2008) History of Quaternary volcanism and lava dams in western Grand Canyon based on lidar analysis, 40Ar/39Ar dating, and field studies: implications for flow stratigraphy, timing of volcanic events, and lava dams. Geosphere 4:181–206

    Google Scholar 

  • Davy BW, Caldwell TG (1998) Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand. J Volcanol Geoth Res 81:69–89

    Google Scholar 

  • De Benedetti AA, Funiciello R, Giordano G, Diano G, Caprilli E, Paterne M (2008) Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy). J Volcanol Geoth Res 176:387–406

    Google Scholar 

  • de Lange WP, Prasetya GS, Healy TR (2001) Modelling of tsunamis generated by pyroclastic flows (ignimbrites). Nat Hazards 24:251–266

    Google Scholar 

  • Delmelle P, Bernard A (2000) Volcanic lakes. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 877–895

    Google Scholar 

  • Donnelly-Nolan JM, Nolan KM (1986) Catastrophic flooding and eruption of ash-flow tuff at Medicine Lake volcano, California. Geology 14:875–878

    Google Scholar 

  • Druitt TH (1998) The eruption, transport and sedimentation of pyroclastic flows. In: Gilbert J, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geological Society of London, Special Publication, vol 145, pp 145–182

    Google Scholar 

  • Duffield WA (2001) At least Noah had some warning. EOS Trans AGU 82(28):305–309

    Google Scholar 

  • Dunne T, Fairchild LH (1983) Estimation of flood and sedimentation hazards around Mt. St. Helens. Shin Sabo 36:12–22

    Google Scholar 

  • Egorov Y (2007) Tsunami wave generation by the eruption of underwater volcano. Nat Hazards Earth Syst Sci 7:65–69

    Google Scholar 

  • Ellis SM, Wilson CJN, Bannister S, Bibby H, Heise W, Wallace L, Patterson N (2007) A future magma inflation event under the rhyolitic Taupo volcano, New Zealand: numerical models based on constraints from geochemical, geological, and geophysical data. J Volcanol Geoth Res 168:1–27

    Google Scholar 

  • Ely LL, Brossy CC, House PK, Safran EB, O’Connor JE, Champion DE, Fenton CR, Bondre NR, Orem CA, Grant GE, Henry CD, Turrin BD (2012) Owyhee Rover intracanyon lava flows: does the river give a dam? Geol Soc Am Bull 124:1667–1687

    Google Scholar 

  • Fenton CR, Cerling TE, Nash BP, Webb RH, Poreda RJ (2002) Cosmogenic 3He ages and geochemical discrimination of lava-dam outburst-flood deposits in western Grand Canyon, Arizona. In: House PK, Webb RH, Baker VR, Levish DR (eds) Ancient floods, modern hazards: principles and applications of paleoflood hydrology. Am Geophys Union, Washington, D.C., pp 191–215

    Google Scholar 

  • Fenton CR, Webb RH, Cerling TE (2003) Peak discharge estimates of two Pleistocene lava-dam outburst floods, western Grand Canyon, Arizona, USA. In: Ely LL, O’Connor JE, House PK (eds) Abstract volume, Paleoflood III conference. Hood River, Oregon, p 18

    Google Scholar 

  • Fenton CR, Poreda RJ, Nash BP, Webb RH, Cerling TE (2004) Geochemical discrimination of five Pleistocene lava-dam outburst flood deposits, western Grand Canyon, Arizona. J Geol 112:91–110

    Google Scholar 

  • Fenton CR, Webb RH, Cerling TE (2006) Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA. Quatern Res 65:324–335

    Google Scholar 

  • Fisher RV, Heiken G (1982) Mt. Pelée, Martinique: May 8 and 20, 1902, pyroclastic flows and surges. J Volcanol Geoth Res 13:339–371

    Google Scholar 

  • Freundt A, Kutterolf S, Wehrmann H, Schmincke H-U, Strauch W (2006) Eruption of the dacite to andesite zoned Mateare Tephra, and associated tsunamis in Lake Managua, Nicaragua. J Volcanol Geoth Res 149:103–123

    Google Scholar 

  • Freundt A, Strauch W, Kutterolf S, Schmincke H-U (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure appl Geophys 164:527–545

    Google Scholar 

  • Frost DL, Lee JHS, Thibault P (1994) Numerical computation of underwater explosions due to fuel-coolant interactions. Nucl Eng Des 146:165–179

    Google Scholar 

  • Funiciello R, Giordano G, De Rita D (2003) The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J Volcanol Geoth Res 123:43–61

    Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons. United States department of defence and the energy research and development administration, Washington D.C., 644 p

    Google Scholar 

  • Glicken, H, Meyer, W, Sabol, M (1989) Geology and ground-water hydrology of Spirit Lake blockage, Mount St. Helens, Washington, with implications for lake retention. US Geol Surv Bulletin 1789:30

    Google Scholar 

  • Glicken H (1998) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Bull Geol Surv Jpn 49:55–106

    Google Scholar 

  • Gomez C, Kataoka KS, Tanaka K (2012) Large-scale internal structure of the Sanbongi Fan—Towada volcano, Japan: putting the theory to the test, using GPR on volcaniclastic deposits. J Volcanol Geoth Res 229–230:44–49

    Google Scholar 

  • Goodyear WA (1880) Earthquake and volcanic phenomena, December 1879 and January 1880, in the Republic of Salvador, Central America. Panama Star and Herald, p 56

    Google Scholar 

  • Graettinger AH, Manville V, Briggs RM (2010) Depositional record of historic lahars in the Whangaehu valley, Ruapehu, New Zealand: implications for trigger mechanisms, flow dynamics, and lahar hazards. Bull Volc 72:279–296

    Google Scholar 

  • Grange LI (1937) The geology of the Rotorua-Taupo subdivision. N Z Geol Surv Bull 37:138

    Google Scholar 

  • Gudmundsson MT, Sigmundsson F, Björnsson H (1997) Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389:954–957

    Google Scholar 

  • Gunkel G, Beulker C, Grupe B, Viteri F (2008) Hazards of volcanic lakes: analysis of Lakes Quilotoa and Cuicocha, Ecuador. Advances in Geosciences 14:29–33

    Google Scholar 

  • Hackett WR, Houghton BF (1989) A facies model for a quaternary andesitic composite volcano: Ruapehu, New Zealand. Bull Volc 51:51–68

    Google Scholar 

  • Hamblin WK (1994) Late Cenozoic lava dams in the western Grand Canyon. Geological Society of America, Memoir 183

    Google Scholar 

  • Hancox GT, Keys H, Webby MG (2001) Assessment and mitigation of dam-break lahar hazards from Mt. Ruapehu Crater Lake following the 1995–1996 eruptions. In: McManus KJ (ed) Engineering and development in hazardous terrains. In: Proceedings of New Zealand Geotechnical Society/NZ Institute of Professional Engineers Conference, Christchurch, New Zealand, pp 385–409

    Google Scholar 

  • Hart K, Carey S, Sigurdsson H, Sparks RSJ, Robertson REA (2004) Discharge of pyroclastic flows into the sea during the 1996–1998 eruptions of the Soufrière Hills volcano, Montserrat. Bull Volcanol 66:599–614

    Google Scholar 

  • Healy J (1954) The Whangaehu lahar of 24th December 1953. New Zealand geological survey, T20/501 Ruapehu immediate reports, vol 1, no 587

    Google Scholar 

  • Healy J, Lloyd EF, Rushworth DEH, Wood CP, Glover RB, Dibble RR (1978) The eruption of Ruapehu, New Zealand on 22 June 1969. NZ Depart Sci Ind Res Bull 224:1–80

    Google Scholar 

  • Hegan BD, Johnson JD, Severne C (2001) Landslide risk from the Hipaua geothermal area near Waihi village at the southern end of Lake Taupo. In: McManus KJ (ed) Engineering and development in hazardous terrains. In: Proceedings of New Zealand Geotechnical Society/NZ Institute of Professional Engineers Conference, Christchurch, New Zealand, pp 439–448

    Google Scholar 

  • Hermanns R, Nierdermann S, Ivy-Ochs S, Kubik PW (2004) Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina)—evidence from surface dating and stratigraphic analyses. Landslides 2:113–122

    Google Scholar 

  • Hernández PA, Pérez NM, Varekamp JC, Hernriquez B, Hernández A, Barrancos J, Padrón E, Calvo D, Melián G (2007) Crater lake temperature changes of the 2005 eruption of Santa Ana volcano, El Salvador, Central America. Pure appl Geophys 164:2507–2522

    Google Scholar 

  • Hickson CJ, Russell JK, Stasiuk MV (1999) Volcanology of the 2350 B.P. eruption of Mount Meager volcanic complex, British Columbia, Canada: implications for hazards from eruptions in topographically complex terrain. Bull Volcanol 60:489–507

    Google Scholar 

  • Hildreth W (1983) The compositionally zoned eruption of 1912 in the valley of ten thousand Smokes, Katmai National Park, Alaska. J Volcanol Geoth Res 18:1–56

    Google Scholar 

  • Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125

    Google Scholar 

  • Hodgson KA, Manville V (1999) Sedimentology and flow behaviour of a rain-triggered lahar, Mangatoetoenui stream, Ruapehu volcano, New Zealand. Geol Soc Am Bull 111:743–754

    Google Scholar 

  • Hodgson KA, Nairn IA (2000) The catastrophic—1350 AD post-eruption flood from Lake Tarawera, New Zealand. Bay of plenty regional council, resource planning report. 61 p

    Google Scholar 

  • Hodgson KA, Nairn IA (2005) The—AD 1315 syn-eruption and AD 1904 post-eruption breakout floods from Lake Tarawera, Haroharo caldera, North Island, New Zealand. NZ J Geol Geophys 48:491–506

    Google Scholar 

  • Hodgson KA, Lecointre J, Neall VE (2007) Onetapu formation: the last 2000 yr of laharic activity at Ruapehu volcano, New Zealand. NZ J Geol Geophys 50:81–99

    Google Scholar 

  • Houghton BF, Nairn IA (1991) The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruptive and depositional mechanisms at a wet volcano. Bull Volcanol 54:25–49

    Google Scholar 

  • Hurst AW, Vandemeulebrouck J (1996) Acoustic noise and temperature monitoring of the crater lake of Mount Ruapehu volcano. J Volcanol Geoth Res 71:45–51

    Google Scholar 

  • Huscroft CA, Ward BC, Barendregt RW, Jackson LE Jr, Opdyke ND (2004) Pleistocene volcanic damming of Yukon river and the maximum age of the Reid glaciation, west-central Yukon. Can J Earth Sci 41:151–164

    Google Scholar 

  • Ichinose G, Anderson JG, Satake K, Schwieckert RA, Lahren MM (2000) The potential hazard from tsunami and seiche waves generated by large earthquakes within Lake Tahoe, California-Nevada. Geophys Res Lett 27:1203–1206

    Google Scholar 

  • Iverson RM (1995) Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes? J Volcanol Geoth Res 66:295–308

    Google Scholar 

  • Jennings ME, Schneider VR, Smith PE (1981) Computer assessments of potential hazards from breaching of two debris dams, Toutle river and Cowlitz river systems. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. United States geological survey professional paper, vol 1250, pp 829–836

    Google Scholar 

  • Johnson RW (1987) Large-scale volcanic cone collapse: the 1888 slope failure of Ritter volcano, and other examples from Papua New Guinea. Bull Volcanol 49:669–679

    Google Scholar 

  • Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. Geol Soc Am Bull 112:720–726

    Google Scholar 

  • Karátson D, Thouret J-C, Moriya I, Lomoschitz A (1999) Erosion calderas: origins, processes, structural and climatic control. Bull Volcanol 61:174–193

    Google Scholar 

  • Kataoka KS (2011) Geomorphic and sedimentary evidence of a gigantic outburst flood from Towada caldera after the 15 ka Towada-Hachinohe ignimbrite eruption, northeast Japan. Geomorphology 125:11–26

    Google Scholar 

  • Kataoka KS, Urabe A, Manville V, Kajiyama A (2008) Large-scale breakout flood from an ignimbrite-dammed river: aftermath of the Numazawako eruption (BC 3400), northeast Japan. Geol Soc Am Bull 120:1233–1247

    Google Scholar 

  • Kear D, Schofield JC (1978) Geology of the Ngaruawahia subdivision. NZ Geol Surv Bull 88:168

    Google Scholar 

  • Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955

    Google Scholar 

  • Kedrinksii VK (2005) Hydrodynamics of explosions: experiments and models. Springer, Berlin, 362 p

    Google Scholar 

  • Kempter KA, Rowe GL (2000) Leakage of active crater lake brine through the north flank at Rincón de la Veja volcano, northwest Costa Rica, and implications for crater collapse. J Volcanol Geoth Res 97:143–159

    Google Scholar 

  • Kershaw JA, Clague JJ, Evans SG (2005) Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia. Earth Surf Proc Land 30:1–25

    Google Scholar 

  • Keys HJR (2007) Lahars of Ruapehu volcano, New Zealand: risk mitigation. Ann Glaciol 45:155–162

    Google Scholar 

  • Keys HJR, Green PM (2008) Ruapehu lahar New Zealand 18 March 2007: lessons for hazard assessment and risk mitigation 1995–2007. J Disaster Res 3:284–296

    Google Scholar 

  • Kilgour G, Jolly AD, Sherburn S, Scott B, Miller C, Rae AJ (2007) The October 2006 eruption of Ruapehu Crater Lake. In: Mortimer N, Wallace L (eds) Proceedings, Joint GSNZ/NZGS annual conference, Tauranga

    Google Scholar 

  • Kilgour G, Manville V, Della Pasqua F, Reyes AG, Graettinger AH, Hodgson KA, Jolly AD (2010) The 25 September 2007 eruption of Mt. Ruapehu, New Zealand: Directed ballistics, Surtseyan jets, and ice-slurry lahars. J Volcanol Geoth Res 191:1–14

    Google Scholar 

  • Kling GW, Clark MA, Compton HR, Devine JD, Evans WC, Humphrey AM, Koenigsberg EJ, Lockwood JP, Tuttle ML, Wagner GN (1987) The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236:169–175

    Google Scholar 

  • Koyaguchi T, Woods AW (1996) On the formation of eruption columns following explosive mixing of magma and surface water. J Geophys Res 101:5561–5574

    Google Scholar 

  •  Kuenzi WD, Horst OH, McGehee RV (1979) Effect of volcanic activity on fluvial-deltaic sedimentation in a modern arc-trench gap, southwestern Guatemala. Geol Soc Am Bull 90:827–838

    Google Scholar 

  • Kusakabe M, Ohba T, Yoshida Y, Satake H, Ohizumi T, Evans WC, Tanyileke G, Kling GW (2008) Evolution of CO2 in Lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem J 42:93–118

    Google Scholar 

  • Lagmay AMF, Rodolfo KS, Siringan FP, Uy H, Remotigue C, Zamora P, Lapus M, Rodolfo R, Ong J (2007) Geology and hazard implications of the Maraunot notch in the Pinatubo caldera, Philippines. Bull Volcanol 69:797–809

    Google Scholar 

  • Larson GL (1989) Geographical distribution, morphology and water quality of caldera lakes: a review. Hydrobiologia 171:23–32

    Google Scholar 

  • Latter JH (1981) Tsunamis of volcanic origin: summary of causes, with particular reference to Krakatoa, 1883. Bull Volcanol 44:467–490

    Google Scholar 

  • Le Guern F, Tazieff H, Pierret RF (1982) An example of health hazard: people killed by gas during a phreatic eruption: Dieng Plateau (Java, Indonesia), February 20th 1979. Bull Volc 45:153–156

    Google Scholar 

  • Lipman PW, Mullineaux DR (1981) The 1980 eruptions of Mount St. Helens, Washington. United Stated geological survey, Professional Paper, vol 1250, 844 p

    Google Scholar 

  • Lliboutry L, Arnao BM, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordilerra Blanca, Peru 1. Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254

    Google Scholar 

  • Lockwood JP, Costa JE, Tuttle ML, Nni J, Tebor SG (1988) The potential for catastrophic dam failure at Lake Nyos maar, Cameroon. Bull Volcanol 50:340–349

    Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull Volcanologique 37:183–204

    Google Scholar 

  • Lowe DJ, Green JD (1992) Lakes. In: Soons JM, Selby MJ (eds) Landforms of New Zealand. Longman Paul Ltd., pp 107–143

    Google Scholar 

  • Lube G, Cronin SJ, Manville V, Procter JN, Cole SE, Freundt A (2012) Energy growth in laharic mass flows. Geology 40:475–478

    Google Scholar 

  • Machado F, Parsons WH, Richards AF, Mulford JW (1962) Capelinhos eruption of Fayal volcano, Azores, 1957–1958. J Geophys Res 67:3519–3529

    Google Scholar 

  • Macías JL, Capra L, Scott KM, Espíndola JM, García-Palomo A, Costa JE (2004) The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico. Geol Soc Am Bull 116:233–246

    Google Scholar 

  • Magnússon E, Gudmundsson MT, Roberts MJ, Sigurðsson G, Höskuldsson F, Oddsson B (2012) Ice-volcano interactions during the 2010 Eyjafjallajökull eruption, as revealed by airborne imaging radar. J Geophys Res 117:B07405

    Google Scholar 

  • Mann CP, Stix J, Vallance JW, Richer M (2004) Subaqueous intracaldera volcanism, Ilopango Caldera, El Salvador, Central America. In: Rose WI Jr, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El Salvador. Geological Society of America, Special Paper, vol 375, pp 159–174

    Google Scholar 

  • Manville VR (2001) Sedimentology and history of Lake Reporoa: an ephemeral supra-ignimbrite lake, Taupo Volcanic Zone, New Zealand. In: White JDL, Riggs NR (eds) Volcanogenic sedimentation in lacustrine settings. International association of sedimentologists, Special Publication, vol 30, pp 109–140

    Google Scholar 

  • Manville V (2002) Sedimentary and geomorphic responses to a large ignimbrite eruption: readjustment of the Waikato river in the aftermath of the A.D. 181 Taupo eruption, New Zealand. J Geol 110:519–542

    Google Scholar 

  • Manville V (2004) Palaeohydraulic analysis of the 1953 Tangiwai lahar: New Zealand’s worst volcanic disaster. Acta Vulcanol XVI(1/2):137–152

    Google Scholar 

  • Manville V (2010) An overview of break-out floods from intracaldera lakes. Glob Planet Change 70:14–23

    Google Scholar 

  • Manville V, Cronin SJ (2007) Break-out lahar from New Zealand’s Crater Lake. EOS Trans AGU 88:441–442

    Google Scholar 

  • Manville V, Wilson CJN (2003) Interactions between volcanism, rifting and subsidence: implications of intracaldera palaeoshorelines at Taupo volcano, New Zealand. J Geol Soc London 160:3–6

    Google Scholar 

  • Manville V, Wilson CJN (2004) The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response. NZ J Geol Geophys 47:525–547

    Google Scholar 

  • Manville VR, White JDL, Houghton BF, Wilson CJN (1999) Paleohydrology and sedimentology of a post-1800a breakout flood from intracaldera Lake Taupo, North Island, New Zealand. Geol Soc Am Bull 111:1435–1447

    Google Scholar 

  • Manville V, Newton EH, White JDL (2005) Fluvial responses to volcanism: resedimentation of the 1800a Taupo ignimbrite in the Rangitaiki River catchment, North Island, New Zealand. Geomorphology 65:49–70

    Google Scholar 

  • Manville V, Hodgson KA, Nairn IA (2007) A review of break-out floods from volcanogenic lakes in New Zealand. NZ J Geol Geophys 52:131–150

    Google Scholar 

  • Massey C, Manville V, Hancox GT, Keys HJR, Lawrence C, McSaveney MJ (2010) Out-burst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt. Ruapehu, New Zealand—a successful early warning. Landslides 7:303–315

    Google Scholar 

  • Mastin LG (1995) Thermodynamics of gas and steam-blast eruptions. Bull Volcanol 57:85–98

    Google Scholar 

  • Mastin LG (1997) Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii. J Geophys Res 102:20093–20109

    Google Scholar 

  • Mastin LG, Witter JB (2000) The hazards of eruptions through lakes and seawater. J Volcanol Geoth Res 97:195–214

    Google Scholar 

  • McClelland L, Simkin T, Summers M, Nielsen E, Stein TC (1989) Global volcanism, 1975–1985. Prentice-Hall, Englewood Cliffs, 655 p

    Google Scholar 

  • McCoy FW, Heiken G (2000) The late-bronze age explosive eruption of Thera (Santorini), Greece: regional and local effects. In: McCoy FW, Heiken G (eds) Volcanic hazards and disasters in human antiquity. Geological Society of America, Special Publication, vol 345, pp 43–70

    Google Scholar 

  • McGimsey RG, Waythomas CF, Neal CA (1994) High stand and catastrophic draining of intracaldera Surprise Lake, Aniakchak Volcano, Alaska. U.S. Geol Surv Bull 2107:59–71

    Google Scholar 

  • McGuire WJ (1996) Volcano instability: a review of contemporary issues. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geological Society of London, Special Publication, vol 110, pp 1–23

    Google Scholar 

  • Meier MF, Carpenter PJ, Janda RJ (1981) Hydrologic effects of Mount St. Helens’ 1980 eruptions. EOS Trans AGU 62(33):625–626

    Google Scholar 

  • Meyer DF, Martinson HA (1989) Rates and processes of channel development and recovery following the 1980 eruption of Mount St. Helens, Washington. J Hydrol Sci 34:115–127

    Google Scholar 

  • Meyer W, Sabol MA, Schuster RL (1986) Landslide dammed lakes at Mount St. Helens, Washington. In: Schuster RL (ed) Landslide dams—process, risk, and mitigation. American society of civil engineers geotechnical Special Publication, vol 3, pp 21–41

    Google Scholar 

  • Miller TP, Smith RL (1977) Spectacular mobility of ash flows around Aniakchak and Fisher calderas, Alaska. Geology 5:173–176

    Google Scholar 

  • Miura K, Ban M, Ohba T, Fujinawa A (2012) Sequence of the 1895 eruption of the Zao volcano, Tohuku Japan. J Volcanol Geoth Res 247–248:139–157

    Google Scholar 

  • Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363

    Google Scholar 

  • Moore JG, Nakamura K, Alcarez A (1966a) The September 28–30, 1965 eruption of Taal Volcano, Philippines. Bull Volcanol 29:75–76

    Google Scholar 

  • Moore JG, Nakamura K, Alcarez A (1966b) The 1965 eruption of Taal Volcano. Science 151:955–960

    Google Scholar 

  • Mooser F, Meyer-Abich H, McBirney AR (1958) Central America. Catalogue of active volcanoes of the world including solfatara fields, Part VI, International Association of Volcanology and Chemistry of the Earth’s Interior, Rome, Italy, 146 p

    Google Scholar 

  • Morimoto R (1948) Submarine eruption of the Myôjin reef. Bull Volcanol 23:151–160

    Google Scholar 

  • Morrissey M, Gisler G, Weaver R, Gittings ML (2010) Numerical model of crater lake eruptions. Bull Volcanol 72:1169–1178

    Google Scholar 

  • Motyka RJ (1977) Katmai caldera: glacier growth, lake rise, and geothermal activity. Short Notes Alaskan Geol 55:17–21

    Google Scholar 

  • Nairn IA (1979) Rotomahana-Waimangu eruption, 1886. base-surge and basalt magma. NZ J Geol Geophys 22:363–378

    Google Scholar 

  • Nairn IA (2002) Geology of the Okataina volcanic centre. Institute of Geological and Nuclear Sciences, geological map no. 25 (1:50 000). Lower Hutt, New Zealand, 1 sheet + 156 p

    Google Scholar 

  • Nairn IA, Wood CP, Hewson CAY (1979) Phreatic eruptions of Ruapehu: April 1975. NZ J Geol Geophys 22:155–173

    Google Scholar 

  • Nairn IA, Self S, Cole JW, Leonard GS, Scutter C (2001) Distribution, stratigraphy and history of proximal deposits from the—AD 1305 Kaharoa eruption of Tarawera volcano, New Zealand. NZ J Geol Geophys 44:467–484

    Google Scholar 

  • Nakagawa M, Wada K, Thordarson T, Wood CP, Gamble JA (1999) Petrological investigations of the 1995 and 1996 eruptions of Ruapehu volcano, New Zealand: formation of discrete and small magma pockets and their intermittent discharge. Bull Volcanol 61:15–31

    Google Scholar 

  • Nayar A (2009) A lakeful of trouble. Nature 460:321–333

    Google Scholar 

  • Neall VE (1996) Hydrological disasters associated with volcanoes. In: Singh VP (ed) Hydrology of disasters. Kluwer, Dordrecht, pp 395–425

    Google Scholar 

  • Nelson CH, Bacon CR, Robinson SW, Adam DP, Bradbury JP, Barber JH Jr, Schwartz D, Vagenas G (1994) The volcanic, sedimentologic, and paleolimnologic history of the Crater Lake caldera floor, Oregon: evidence for small caldera evolution. Geol Soc Am bull 106:684–704

    Google Scholar 

  • Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu—“Surtseyan-style” eruptions witnessed on Ambae Island. Episodes 29:87–92

    Google Scholar 

  • Németh K, Cronin SJ, Smith IEM, Flores JA (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental conditions, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74:2121–2137

    Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. US Geol Surv Bull 1855:1108 p

    Google Scholar 

  • Newhall CG, Punongbayan RS (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, 1126 p

    Google Scholar 

  • O’Connor JE, Beebee RA (2009) Floods from natural rock-material dams. In: Burr DM, Carling PA, Baker VR (eds) Megaflooding on Earth and Mars. Cambridge University Press, Cambridge, pp 128–171

    Google Scholar 

  • O’Connor JE, Clague JJ, Walder JS, Manville V, Beebee RA (2013) Outburst floods. In: Shroder JF (ed) Treatise on geomorphology. Academic Press, San Diego, pp 475–510

    Google Scholar 

  • Oppenheimer C (1993) Infrared surveillance of crater lakes using satellite data. J Volcanol Geoth Res 55:117–128

    Google Scholar 

  • O’Shea BE (1954) Ruapehu and the Tangiwai disaster. NZ J Sci Technol B36:174–189

    Google Scholar 

  • Otway PM (1986) Vertical deformation associated with the Taupo earthquake swarm, June 1983. In: Reilly WI, Harford BE (eds) Recent crustal movements. Royal Society of New Zealand Bulletin, vol 24, pp 187–200

    Google Scholar 

  • Pain CF, Blong RJ, McKee CO, Polach HA (1981) Pyroclastic deposits and eruptive sequences of Long Island. In: Johnson RW (ed) Cooke-Ravian volume of volcanological papers. Geological Survey of Papua New Guinea, Port Moresby, Memoir, vol 10, pp 101–113

    Google Scholar 

  • Park C, Schmincke H-U (1997) Lake formation and catastrophic dam burst during the Late Pleistocene Laacher See eruption (Germany). Naturwissenschaft 84:521–525

    Google Scholar 

  • Pierson TC (1985) Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington. Geol Soc Am Bull 96:1056–1069

    Google Scholar 

  • Pierson TC (1997) Transformation of water flood to debris flow following the eruption-triggered transient-lake breakout from the crater on 19 March 1982. In: Pierson TC (ed) Hydrologic consequences of hot-rock/snowpack interactions at Mount St. Helens volcano, Washington, 1982–1984. United States geological survey open-file report, vol 96–179, pp 19–36

    Google Scholar 

  • Pierson TC, Janda RJ, Thouret J-C, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Columbia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geoth Res 41:17–66

    Google Scholar 

  • Pierson TC, Janda RJ, Umbal JV, Daag AS (1992) Immediate and long-term hazards from lahars and excess sedimentation in rivers draining Mt. Pinatubo, Philippines. U.S. Geol Surv Water-Resour Invest Rep 92–4039:183–203

    Google Scholar 

  • Procter JN, Cronin SJ, Fuller IC, Lube G, Manville V (2010) Quantifying the geomorphic impacts of a lake break-out flood, Mt. Ruapehu. NZ Geol 38:67–70

    Google Scholar 

  • Pulgarin B, Macías JL, Cepeda H, Capra L (2004) Late Pleistocene deposits associated with a southern flank collapse of the Nevado del Huila volcanic complex (Colombia). Acta Vulcanolgica 16:37–58

    Google Scholar 

  • Pullar WA, Selby MJ (1971) Coastal progradation of Rangitaiki Plains, New Zealand. NZ J Sci 14:419–434

    Google Scholar 

  • Ramos EG (1986) Lakeshore landslides: unrecognised hazards around Taal volcano. Philippine J Volcanol 3:28–53

    Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782

    Google Scholar 

  • Reynolds MA, Best JG, Johnson RW (1980) 1953–57 eruption of Tuluman volcano: rhyolitic volcanic activity in the northern Bismarck sea. Geol Surv P N G Mem 7:5–44

    Google Scholar 

  • Richer M, Mann CP, Stix J (2004 Mafic magma injection triggers eruption at Ilopango Caldera, El Salvador, Central America. In: Rose WI Jr, Bommer JJ, López DL, Carr MJ, Major JJ (eds) Natural hazards in El salvador. Geological Society of America, Special Paper, vol 375, pp 175–189

    Google Scholar 

  • Riggs NR, Ort M, White JDL, Wilson CJN, Clarkson R (2001) Post-1.8-ka marginal sedimentation in Lake Taupo, New Zealand: effects of wave energy and sediment supply in a rapidly rising lake. In: White JDL, Riggs NR (eds) Volcanogenic sedimentation in lacustrine settings. International Association of Sedimentologists, Special Publication, vol 30, pp 151–177

    Google Scholar 

  • Rodolfo KS (2000) The hazard from lahars and jökulhlaups. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 973–995

    Google Scholar 

  • Rodolfo KS, Umbal JV (2008) A prehistoric lahar-dammed lake and eruption of Mount Pinatubo described in a Philippine aborigine legend. J Volcanol Geoth Res 176:432–437

    Google Scholar 

  • Rodolfo KS, Umbal JV, Alonso RA, Remotigue CT, Paladio-Melosantos ML, Salvador JHG, Evangelista D, Miller Y (1996) Two years of lahars on the western flank of Mount Pinatubo: Initiation, flow processes, deposits, and attendant geomorphic and hydraulic changes. In: Newhall CG, Punongbayan RS (eds) Fire and Mud, eruptions and lahars of Mount Pinatubo. University of Washington Press, Seattle, Philippines, pp 989–1013

    Google Scholar 

  • Rose WI (1972) Notes on the 1902 eruption of Santa María Volcano, Guatemala. Bull Volcanol 36:1–17

    Google Scholar 

  • Rose WI, Conway FM, Pullinger CR, Deino CR, McIntosh WC (1999) An improved age framework for late quaternary silicic eruptions in northern Central America. Bull Volcanol 61:106–120

    Google Scholar 

  • Rowe GLJ, Ohsawa S, Takano B, Brantley SL, Fernandez JF, Barquero J (1992) Using crater lake chemistry to predict volcanic activity at Poás volcano, Costa Rica. Bull Volcanol 54:494–503

    Google Scholar 

  • Schaefer JR, Scott WE, Evans WC, Jorgenson J, McGimsey RG, Wang B (2008) The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: field observations and preliminary water and vegetation chemistry results. Geochem Geophys Geosyst 9:Q07018

    Google Scholar 

  • Schuster RL (2000) Outburst debris-flows from failure of natural dams. In: Wieczorek G, Naeser N (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Balkema, Rotterdam, pp 29–42

    Google Scholar 

  • Schuster RL, Evans SG (2011) Engineering measures for the hazard reduction of landslide dams. In: Evans SG, Hermanns RL, Strom A, Scarascia-Mugnozza G (eds) Natural and artificial rockslide dams. Springer, Berlin, pp 77–100

    Google Scholar 

  • Scott KM (1988) Origin, behavior, and sedimentology of prehistoric catastrophic lahars at Mt. St. Helens, Washington. Geological Society of America, Special Paper, vol 229, pp 23–36

    Google Scholar 

  • Scott KM (1989) Magnitude and frequency of lahars and lahar-runout flows in the Toutle-Cowlitz River system. United States geological survey, Professional Paper, vol 1447-B, 33 p

    Google Scholar 

  • Scott KM, Hoblitt RE, Torres RC, Self S, Martinez MML, Nillos T Jr (1996a) Pyroclastic flows of the June 15, 1991, climactic eruption of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and Mud, eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 545–570

    Google Scholar 

  • Scott KM, Janda RJ, De La Cruz EG, Gabinete E, Eto I, Isada M, Sexon M, Hadley KC (1996b) Channel and sedimentation responses to large volumes of 1991 volcanic deposits on the east flank of Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and Mud, eruptions and lahars of Mount Pinatubo. University of Washington Press, Seattle, Philippines, pp 971–988

    Google Scholar 

  • Segschneider B, Landis CA, Manville V, White JDL, Wilson CJN (2002) Environmental response to a large, explosive rhyolite eruption: Lithofacies and physical sedimentology of post-1.8 ka pumice-rich Taupo volcaniclastics in the Hawke’s Bay region. NZ Sediment Geol 150:275–299

    Google Scholar 

  • Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704

    Google Scholar 

  • Shepherd JB, Aspinall WP, Rowley KC, Pereira J, Sigurdsson H, Fiske RS, Tomblin JF (1979) The eruption of Soufrière volcano, St Vincent April–June 1979. Nature 282:24–28

    Google Scholar 

  • Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geoth Res 17:1–29

    Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geoth Res 22:163–197

    Google Scholar 

  • Siebert L (1996) Hazards of large volcanic debris avalanches and associated eruptive phenomena. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 541–572

    Google Scholar 

  • Siebert L, Begét JE, Glicken H (1995) The 1883 and late-prehistoric eruptions of Augustine volcano, Alaska. J Volcanol Geoth Res 66:367–395

    Google Scholar 

  • Sigurdsson H, Devine JD, Tchoua FM, Presser TS, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroon. J Volcanol Geoth Res 31:1–16

    Google Scholar 

  • Silva L, Cochemé JJ, Canul R, Duffield W, Tilling R (1982) El Chichón Volcano. SEAN Bulletin, Smithsonian Institution 7(5):2–6

    Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world. Smithsonian institution, global volcanism program. Geoscience press, Tucson, Arizona, 349 p

    Google Scholar 

  • Simmons SF, Keywood M, Scott BJ, Kearn RF (1993) Irreversible change of the Rotomahana-Waimangu hydrothermal system (New Zealand) as a consequence of a volcanic eruption. Geology 21:643–646

    Google Scholar 

  • Smart GM (1981) Volcanic debris control, Gunung Kelud, East Java. In: Erosion and transport in Pacific Rim steeplands. International Association of Hydrological Sciences Publication, vol 134, pp 604–654

    Google Scholar 

  • Smith RCM (1991a) Landscape response to a major ignimbrite eruption, Taupo Volcanic Center, New Zealand. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. Society of Economic Paleontologists and Mineralogists Special Publication, vol 45, 123–137

    Google Scholar 

  • Smith RCM (1991b) Post-eruption sedimentation on the margin of a caldera lake, Taupo Volcanic Centre, New Zealand. Sed Geol 74:89–138

    Google Scholar 

  • Smith RT, Houghton BF (1995) Vent migration and changing eruptive style during the 1800a Taupo eruption: new evidence from the Hatepe and Rotongaio phreatoplinian ashes. Bull Volcanol 57:432–440

    Google Scholar 

  • Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188

    Google Scholar 

  • Stelling P, Gardner J, Begét JE (2005) Eruptive history of fisher Caldera, Alaska, USA. J Volcanol Geoth Res 139:163–183

    Google Scholar 

  • Stilwell WF, Hopkins HJ, Appleton W (1954) Tangiwai railway disaster: report of board of inquiry, Wellington, NZ, 31 p

    Google Scholar 

  • Stimac JA, Goff F, Counce D, Larocque ACL, Hilton DR, Morgenstern U (2004) The crater lake and hydrothermal system of Mount Pinatubo, Philippines: evolution in the decade after the eruption. Bull Volcanol 66:149–167

    Google Scholar 

  • Stoopes GR, Sheridan MR (1992) Giant debris avalanches from the Colima volcanic complex, Mexico: implications for long runout landslides (>100 km) and hazard assessment. Geology 20:299–302

    Google Scholar 

  • Suryo I, Clarke MCG (1985) The occurrence and mitigation of volcanic hazards in Indonesia as exemplified at the Mount Merapi, Mount Kelut and Mount Galunggung volcanoes. Q J Eng Geol 18:79–98

    Google Scholar 

  • Swift CHI, Kresch DL (1983) Mudflow hazards along the Toutle and Cowlitz rivers from a hypothetical failure of Spirit Lake blockage. U.S. geological survey, water-resources investigation report, vol 82–4125. Tacoma, Washington, 10 p

    Google Scholar 

  • Taig T (2002) Ruapehu lahar residual risk assessment. TTAC Limited, 77 p. and 8 appendices

    Google Scholar 

  • Tanguy J-C, Ribière C, Scarth A, Tjetjep WS (1998) Victims from volcanic eruptions: a revised database. Bull Volcanol 60:137–144

    Google Scholar 

  • Tazieff H (1989) Mechanisms of the Nyos carbon dioxide disaster and of co-called phreatic steam eruptions. J Volcanol Geoth Res 39:109–116

    Google Scholar 

  • Thiele R, Moreno H, Elgueta S (1998) Quaternary geological-geomorphological evolution of the uppermost course of the Río Laja valley. Rev Geol Chile 25:229–253

    Google Scholar 

  • Thorarinsson S, Einarsson T, Sigvaldason GE, Elisson G (1964) The submarine eruption off the Vestmann Islands 1963-64. Bull Volcanol 27:434–445

    Google Scholar 

  • Thouret JC, Abdurachman KE, Bourdier J-L, Bronto S (1998) Origin, characteristics, and behaviour of lahars following the 1990 eruption of Kelud volcano, eastern Java (Indonesia). Bull Volcanol 59:460–480

    Google Scholar 

  • Tinti S, Pagnoni G, Zaniboni F (2006a) The landslides and tsunamis of the 30th December 2002 in Stromboli analysed through numerical simulations. Bull Volcanol 68:462–479

    Google Scholar 

  • Tinti S, Maramai A, Armigliato A, Graziani L, Manucci A, Pagnoni G, Zaniboni F (2006b) Observations of physical effects from tsunamis of December 30, 2002 at Stromboli volcano, southern Italy. Bull Volcanol 68:450–461

    Google Scholar 

  • Tómasson H (1996) The jökulhlaup from Katla in 1918. Ann Glaciol 22:249–254

    Google Scholar 

  • Tómasson H (2002) Catastrophic floods in Iceland. In: Snorrason Á, Finnsdóttir HP, Moss ME (eds) The extremes of the extremes: extraordinary floods. International Association of Hydrological Sciences publication, vol 271, pp 121–126

    Google Scholar 

  • Torsvik T, Paris R, Didenkulova I, Pelinovsky E, Belousov A, Belousova M (2010) Numerical simulation of a tsunami event during the 1996 eruption in Karymskoye lake, Kamchatka, Russia. Nat Hazards Earth Syst Sci 10:2359–2369

    Google Scholar 

  • Turner G, Ingham M, Bibby H (2007) Electrical resistivity monitoring of seepage and stability of the tephra barrier at Crater Lake, Mt Ruapehu, New Zealand. Geophys Res Abstr 9:11630

    Google Scholar 

  • Tweed FS, Russell AJ (1999) Controls on the formation and sudden drainage of glacier-impounded lakes: implications for jökulhlaup characteristics. Prog Phys Geogr 23:79–110

    Google Scholar 

  • Umbal JV, Rodolfo KS (1996) The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe Lake. In: Newhall CG, Punongbayan RS (eds) Fire and Mud, eruptions and lahars of Mount Pinatubo. University of Washington Press, Seattle, Philippines, pp 951–970

    Google Scholar 

  • van Padang MN (1951) Indonesia. Catalogue of active volcanoes of the world including solfatara fields, part I, International Association of Volcanology and Chemistry of the Earth’s Interior, Rome, Italy, 271 p

    Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Bermúdez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29:1059–1062

    Google Scholar 

  • Vidal N, Merle O (2000) Reactivation of basement faults beneath volcanoes: a new model of flank collapse. J Volcanol Geoth Res 99:9–26

    Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. United States geological survey professional paper, vol 1250, pp 347–377

    Google Scholar 

  • Wagner TP, McKee CO, Kuduon J, Kombua R (2003) Landslide-induced wave in a small volcanic lake: Kasu Tephra Cone, Papua New Guinea. Int J Earth Sci 92:405–406

    Google Scholar 

  • Waitt RB Jr, Pierson TC, MacLeod NS, Janda RJ, Voight B, Holcomb RT (1983) Eruption-triggered avalanche, flood, and lahar at Mount St. Helens—effects of winter snowpack. Science 221:1394–1397

    Google Scholar 

  • Walder JS, Costa JE (1996) Outburst floods from glacier-dammed lakes: the effect of mode of drainage on flood magnitude. Earth Surf Proc Land 21:701–723

    Google Scholar 

  • Walder JS, Watts P, Sorensen OE, Janssen K (2003) Tsunamis generated by subaerial mass flows. J Geophys Res 108:EPM 2.1–2.19

    Google Scholar 

  • Walder JS, Watts P, Waythomas CF (2006) Case study: mapping tsunami hazards associated with debris flow into a reservoir. J Hydraul Eng 132:1–11

    Google Scholar 

  • Walker GPL (1981) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geoth Res 9:395–407

    Google Scholar 

  • Walker GPL, Self S, Wilson L (1984) Tarawera 1886—a basaltic plinian fissure eruption. J Volcanol Geoth Res 21:61–78

    Google Scholar 

  • Ward RH (1922) A note on the significance of the recent subsidence of the shore of Lake Taupo. NZ J Sci Technol 5:280–281

    Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106:11201–11215

    Google Scholar 

  • Waters AC, Fisher RV (1971) Base surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Google Scholar 

  • Watts P, Waythomas CF (2003) Theoretical analysis of tsunami generation by pyroclastic flows. J Geophys Res 108(B12):EPM 4.1–4.4.21

    Google Scholar 

  • Waythomas CF (2001) Formation and failure of volcanic debris dams in the Chakachatna river valley associated with eruptions of the Spurr volcanic complex, Alaska. Geomorphology 39:111–129

    Google Scholar 

  • Waythomas CF, Neal CA (1998) Tsunami generation by pyroclastic flow during the 3500-year B.P. caldera-forming eruption of Aniakchak Volcano, Alaska. Bull Volcanol 60:110–124

    Google Scholar 

  • Waythomas CF, Walder JS, McGimsey RG, Neal CA (1996) A catastrophic flood caused by drainage of a caldera lake at Aniakchak Volcano, Alaska, and implications for volcanic-hazards assessment. Geol Soc Am Bull 108:861–871

    Google Scholar 

  • Webb TH, Ferris BG, Harris JS (1986) The Lake Taupo, New Zealand, earthquake swarms of 1983. NZ J Geol Geophys 33:377–389

    Google Scholar 

  • Wei H, Sparks RSJ, Liu R, Fan Q, Wang Y, Hong H, Zhang HW, Chen H, Jiang C, Dong J, Zheng Y, Pan Y (2003) Three active volcanoes in China and their hazards. J Asian Earth Sci 21:515–526

    Google Scholar 

  • Wei H, Hong H, Sparks RSJ, Walder JS, Han B (2004) Potential hazards of eruptions around the Tianchi caldera lake, China. Acta Geol Sinica 78:790–794

    Google Scholar 

  • White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geoth Res 74:155–170

    Google Scholar 

  • White JDL, Houghton BF, Hodgson KA, Wilson CJN (1997) Delayed sedimentary response to the A.D. 1886 eruption of Tarawera, New Zealand. Geology 25:459–462

    Google Scholar 

  • Williams H (1941) Calderas and their origins. Univ Calif Bull Geol Sci 25:239–346

    Google Scholar 

  • Wilson CJN (1993) Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo volcano, New Zealand. Philos Trans R Soc Lond A343:205–306

    Google Scholar 

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volcanol Geoth Res 112:133–174

    Google Scholar 

  • Wilson CJN, Walker GPL (1985) The Taupo eruption, New Zealand. I. General aspects. Philos Trans R Soc Lond A314:199–228

    Google Scholar 

  • Wilson CJN, Riggs NR, Ort MH, White JDL, Houghton BF (1997) An annotated atlas of post-1.8 ka shoreline features at Lake Taupo, New Zealand. Institute of Geological and Nuclear Sciences, Science Report, vol 97, no 19, Lower Hutt, New Zealand, 35 p

    Google Scholar 

  • Witham CS (2005) Volcanic disasters and incidents: a new database. J Volcanol Geoth Res 148:191–233

    Google Scholar 

  • Wohletz KH (1986) Explosive magma-water interactions: thermodynamics, explosion mechanisms, and field studies. Bull Volcanol 48:245–264

    Google Scholar 

  • Wolfe BA, Begét JE (2002) Destruction of an Aleut village by a catastrophic flood release from Okmok caldera, Umnak Island, Alaska. In: Proceedings of GSA Denver annual meeting. Division of Geological and Geophysical Surveys, Denver, CO

    Google Scholar 

  • Yasui M, Koyaguchi T (2004) Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone. Bull Volcanol 66:243–262

    Google Scholar 

  • Youd TL, Wilson RC, Schuster RL (1981) Stability of blockage in North Fork Toutle river. In: Lipman PW, Mullineaus DR (eds) The 1980 eruptions of Mount St. Helens, Washington. United States Geological Survey Professional Paper 1250, pp 821–828

    Google Scholar 

  • Zen MT, Hadikusumo D (1965) The future danger of Mt. Kelut (eastern Java—Indonesia). Bull Volcanol 28:275–282

    Google Scholar 

Download references

Acknowledgments

Research for this study began under the Catastrophic Flooding and Lahars programme founded by B.F. Houghton and funded by the Foundation for Research Science and Technology, New Zealand under contracts C05516 and C0005X6 to Manville. The manuscript benefited from reviews by TC Pierson and JE O’Connor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Manville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manville, V. (2015). Volcano-Hydrologic Hazards from Volcanic Lakes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_2

Download citation

Publish with us

Policies and ethics