Skip to main content

CO2 Degassing from Volcanic Lakes

  • Chapter
  • First Online:
Volcanic Lakes

Part of the book series: Advances in Volcanology ((VOLCAN))

Abstract

Measurements of CO2 flux emitted at the surface of volcanic lakes have been performed using the so-called floating accumulation chamber method. Two statistical methods are used to process data: the graphical statistical and stochastic simulation methods. The results of graphical statistical approach allow the quantification of two degassing processes acting at the lake surface: one corresponding to CO2 fluxes resulting from rising bubbles and the second corresponding to equilibrium diffusion of dissolved CO2 at the water-air surface. The sequential Gaussian simulation method has been used for mapping the CO2 flux and estimating the total CO2 emission rate at the surface of volcanic lakes. The study of two volcanic lakes is presented in this chapter: Kelud, Indonesia and El Chichón, Mexico. Before a lava dome appeared in the middle of Kelud Lake on the 4th November 2007, the lake contained near neutral waters with a pH of 6. The total CO2 emission rate estimated by stochastic simulation ranged from 105 t day−1 for 2001 to 35 t day−1 for 2006. In early July 2007, the total flux for the lake area was estimated at 307 t day−1, showing that CO2 flux monitoring at the surface of volcanic lakes is a powerful tool in the improvement of early warning systems of volcanic eruptions. A significant change in CO2 flux was not detected for El Chichón lake during the period of survey (2007–2008) but the mapping of the CO2 flux on the lake area highlighted lineaments reflecting structures controlled by the main local and regional tectonic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiuppa A, Caleca A, Federico C, Gurrieri S, Valenza M (2004) Diffuse degassing of carbon dioxide at Somma-Vesuvius volcanic complex (southern Italy) and its relation with regional tectonics. J Volcanol Geotherm Res 133:55–79

    Article  Google Scholar 

  • Atlas del Agua de la Republica Mexicana (1976) Secretaria de recursos hidraulicos. Atlas del Agua de la Republica Mexicana, Mexico, Mexico

    Google Scholar 

  • Barbier B (2010) Heat transfer and geochemical characteristic of the hydrothermal system of Rinjani volano (Lombok, Indonesia). Ph.D. thesis, Universite Libre de Bruxelles, Brussels, Belgium (in French)

    Google Scholar 

  • Bernard A, Escobar CD, Mazot A, Guttiérrez RE (2004) The acid crater lake of Santa Ana volcano, El Salvador. Geol Soc Am Special Paper 375:121–133

    Google Scholar 

  • Bernard A, Mazot A (2004) Geochemical evolution of the young crater lake of Kelud volcano in Indonesia. In: Proceedings of the 11th international symposium on water–rock interaction, Saratoga Springs, New York, USA 1, pp 87–90

    Google Scholar 

  • Bernard A, Solikhin A, Syahbana D, Kunrat S, Barbier B, Hallet V (2008) Kelud eruption. BGVN 33(03):2–7

    Google Scholar 

  • Baubron JC, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53

    Article  Google Scholar 

  • Borges AV, Delille B, Schiettecatte L-S, Gazeau F, Abril G, Frankignoulle M (2004a) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnol Oceanogr 49:1630–1641

    Article  Google Scholar 

  • Borges AV, Vanderborght J-P, Schiettecatte L-S, Gazeau F, Ferron-Smith S, Delille B, Frankignoulle M (2004b) Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27(4):593–603

    Article  Google Scholar 

  • Broecker WS, Peng TH, Ostlund T, Stuiver M (1985) The distribution of bomb radiocarbon in the ocean. J Geophys Res 90:6953–6970

    Article  Google Scholar 

  • Calleja ML, Duarte CM, Prairie YT, Agusti S, Herndl GJ (2009) Evidence for surface organic matter modulation of air-sea CO2 gas exchange. Biogeosciences 6:1105–1114

    Article  Google Scholar 

  • Capasso G, Inguaggiato S (1998) A simple method for the determination of dissolved gases in natural waters. an application to thermal waters from Vulcano Island. Appl Geochem 13:631–642

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108:2425. doi:10. 1029/2002JB002165

    Google Scholar 

  • Caudron C, Mazot A, Bernard A (2012) Carbon dioxide dynamics in Kelud volcanic lake. J Geophys Res 117:B05102. doi:10.1029/2011JB008806

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552

    Article  Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano. J Geophys Res 106(B8):16213–16221

    Google Scholar 

  • Clark JF, Wanninkhof R, Schlosser P, Simpson HJ (1994) Gas exchange in the tidal Hudson River using a dual tracer technique. Tellus 46B:274–285

    Article  Google Scholar 

  • Cole JJ, Bade DL, Bastviken D, Pace ML, Van de Bogert M (2010) Multiple approaches to estimating air-water gas exchange in small lakes. Limnol Oceanogr: Methods 8:285–293

    Article  Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation. Elsevier, New York

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: Geostatistical software library and users guide, 2nd edn. Oxford University Press, New York, p 369

    Google Scholar 

  • Frankignoulle M (1988) Field measurements of air-sea CO2 exchange. Limnol Oceanogr 33:313–322

    Article  Google Scholar 

  • Frankignoulle M, Gattuso J-P, Biondo R, Bourge I, Copin-Montégut G, Pichon M (1996) Carbon fluxes in coral reefs.II Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Eco Pro Series 145:123–132

    Article  Google Scholar 

  • García-Palomo A, Macias JL, Espíndola JM (2004) Strike-slip faults and K-alkaline volcanism at El Chichón volcano, southeastern Mexico. J Volcanol Geotherm Res 136:247–268

    Article  Google Scholar 

  • Guérin F, Abril G, Serça D, Delon D, Richard S, Delmas R, Tremblay A, Varfalvy L (2007) Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J Mar Syst 66:161–172

    Article  Google Scholar 

  • Goovaerts P (2001) Geostatistical modelling of uncertainty in soil science. Geoderma 103(3):26

    Google Scholar 

  • Hernández PA, Salazar JM, Shimoike Y, Mori T, Notsu K, Pérez N (2001) Diffuse emission of CO2 from Miyakejima volcano, Japan. Chemical Geol 177:175–185

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301

    Article  Google Scholar 

  • Kremer JN, Nixon SW, Buckley B, Roques P (2003) Technical note: conditions for using the floating chamber method to estimate ai-water gas exchange. Estuaries 26:985–990

    Article  Google Scholar 

  • Layer PW, García-Palomo A, Jones D, Macías JL, Arce JL, Mora JC (2009) El Chichón volcanic complex, Chiapas, México: stages of evolution based on field mapping and 40Ar/39Ar geochronology. Geofís Int 48:33–54

    Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat Ménart P (ed) The role of air-sea exchange in geochemical cycling. Series C: mathematical and physical sciences. Reidel, D. Publishing Company, Dordrecht, Holland, pp 113–127

    Google Scholar 

  • Liss PS, Slater PG (1974) Flux of gases across the air–sea interface. Nature 247:181–184

    Article  Google Scholar 

  • López D, Ransom L, Pérez NM, Hernández PA, Monterrosa J, Notsu K (2004) Dynamics of diffuse degassing at Ilopango caldera, El Salvador, Central America. In: Rose WI, Bommer JJ, Sandoval C (eds) Natural hazards in El Salvador. Geological Society of America, Special Paper, 375:191–202

    Google Scholar 

  • Matthews CJD, Saint-Luis VL, Hesslein RH (2003) Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ Sci Technol 37:772–780

    Article  Google Scholar 

  • Mazot A (2005) CO2 degassing and fluid geochemistry at Papandayan and Kelud volcanoes, Java Island, Indonesia (in French). Ph.D. thesis, Universite Libre de Bruxelles, Brussels

    Google Scholar 

  • Mazot A, Rouwet D, Taran Y, Inguaggiato S, Varley N (2011a) CO2 and He degassing at El Chichón volcano, Chiapas, Mexico: gas flux, origin and relationship with local and regional tectonics. In: Inguaggiato S, Shinohara H, and Fischer T (eds) Geochemistry of volcanic fluids: a special issue in honor of Yuri A. Taran. Bull Volcanol 73(4):423–442

    Google Scholar 

  • Mazot A, Taran Y (2009) CO2 flux from the volcanic lake of El Chichón (Mexico). Geofís Int 48:73–83

    Google Scholar 

  • Mazot A, Vaselli O, Nisi B (2011b) Estimation of CO2 flux from Lakes Monticchio, Mt Vulture, Southern Italy. Geophys Res Abs 13, EGU2011-9543

    Google Scholar 

  • McGillis WR, Edson JB, Ware JD, Dacey JWH, Hare JE, Fairall CW, Wanninkhof R (2001) Carbon dioxide flux techniques performed during GasEx-98. Mar Chem 75:267–280

    Article  Google Scholar 

  • McGillis WR, Wanninkhof R (2006) Aqueous CO2 gradients for air–sea flux estimates. Mar Chem 98:100–108

    Article  Google Scholar 

  • Meneses-Rocha JJ (2001) Tectonic evolution of the Ixtapa Graben, an example of a strike-slip basin of southeastern Mexico: implications for regional petroleum systems. In: Bartolini C, Buffler RT, Cantú-Chapa A (eds) The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems. AAPG Memoir 75. AAPG, Tulsa, pp 183–216

    Google Scholar 

  • Notsu K, Sugiyama K, Hosoe M, Uemura A, Shimoike Y, Tsunomori F, Sumino H, Yamamoto J, Mori T, Hernández PA (2005) Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J Volcanol Geotherm Res 139:147–161

    Article  Google Scholar 

  • Padrón E, Hernández PA, Toulkeridis T, Pérez NM, Marrero R, Melían G, Virgili G, Notsu K (2008) Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. J Volcanol Geotherm Res 176:163–169

    Article  Google Scholar 

  • Pérez NM, Hernández PA, Padilla G, Nolasco D, Barrancos J, Melían G, Padrón E, Dionis S, Calvo D, Rodríguez F, Notsu K, Mori T, Kusakabe M, Arpa MC, Reniva P, Ibarra M (2011) Global CO2 emission from volcanic lakes. Geology 39:235–238

    Article  Google Scholar 

  • Rose BW, Bornhorst TJ, Halsor SP, Capaul WA, Plumley PS, De La Cruz Rayna S, Mena M, Mota R (1984) Volcan El Chichón, Mexico: Pre-1982 S-rich eruptive activity. J Volcanol Geotherm Res 23:147–167

    Google Scholar 

  • Rouwet D, Taran Y, Inguaggiato S, Varley N, JA SS (2008) Hydrochemical dynamics of the “lake-spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248

    Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341

    Article  Google Scholar 

  • Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J Volcanol Geotherm Res 175:472–481

    Article  Google Scholar 

  • Toutain JP, Sortino F, Baubron JC, Richon O, Surono SS, Nonell A (2009) Structure and CO2 budget of Merapi volcano during intereruptive periods. Bull Volcanol 71:815–826

    Article  Google Scholar 

  • Upstill-Goddard RC, Watson AJ, Liss PS, Liddicoat MI (1990) Gas transfer velocities in lakes measured with SF6. Tellus 42B:364–377

    Article  Google Scholar 

  • Vachon D, Prairie YT, Cole JJ (2010) The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnol Oceanogr 55(4):1723–1732

    Article  Google Scholar 

  • Vandemeulebrouck J, Sabroux J-C, Halbwachs M, Surono N, Poussielgue N, Grangeon J, Tabbagh J (2000) Hydroacoustic noise precursors of the 1990 eruption of Kelut volcano, Indonesia. J Volcanol Geotherm Res 97:443–456

    Article  Google Scholar 

  • Varekamp JC, Pasternack GB, Rowe GL (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179

    Article  Google Scholar 

  • Wanninkhof J (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res C5:7373–7382

    Article  Google Scholar 

  • Wanninkhof R, Ledwell JR, Broecker WS (1985) Gas exchange wind speed relationship measured with sulphur hexafluoride on a lake. Science 227:1224–1226

    Article  Google Scholar 

  • Werner C, Cardellini C (2006) Comparison of carbon dioxide emissions with fluid upflow, chemistry, and geologic structures at the Rotorua geothermal system, New Zealand. Geothermics 35:221–238

    Article  Google Scholar 

  • WestSystems (2006) Portable diffuse flux meter LI820 carbon dioxide handbook, p 92

    Google Scholar 

  • Williams-Jones G, Stix J, Heiligmann M, Charland A, Sherwood Lollar B, Arner N, Garzón G, Baquero J, Renández E (2000) A model of diffuse degassing at three subduction-related volcanoes. Bull Volcanol 62:130–142

    Google Scholar 

  • Zappa C, Raymond PA, Terray EA, McGillis WR (2003) Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26:1401–1415

    Article  Google Scholar 

  • Zhao D, Xie L (2010) A practical bi-parameter formula of gas transfer velocity depending on wave states. J Ocean 66:663–671

    Article  Google Scholar 

Download references

Acknowledgments

Thoughtful reviews by Takeshi Ohba and Salvatore Ingguagiato were most helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Mazot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazot, A., Bernard, A. (2015). CO2 Degassing from Volcanic Lakes. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J. (eds) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36833-2_15

Download citation

Publish with us

Policies and ethics