Skip to main content

Developmental Reprogramming by Environmental Estrogens: How Early Life Exposures Affect Cancer Risk in Adulthood

  • Chapter
  • First Online:
Environmental Epigenomics in Health and Disease

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1458 Accesses

Abstract

There is an emerging consensus that development is a time of increased susceptibility to the adverse effects of environmental agents. Observations in both humans and experimental animal models have led to the “developmental origins of health and disease” or DOHaD hypothesis, which posits that environmental exposures during development reprogram the epigenome to profoundly impact susceptibility to diseases of adulthood, including cancer. Recent epigenetic data confirm that alterations in both DNA methylation and histone methyl marks are associated with developmental reprogramming and linked to environmental exposures that increase cancer susceptibility. Importantly, reprogramming of the epigenome by environmental exposures during susceptible windows of development can remain dormant until triggered by later-life events such as puberty. The identification of critical epigenetic alterations associated with developmental reprogramming holds the promise for developing biomarkers that can identify individuals at increased cancer risk as a result of early life environmental exposures. Furthermore, because epigenetic changes are reversible, it may be possible in the future to reverse the adverse effects of developmental reprogramming in affected individuals at increased risk of cancer as a result of early life environmental exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPA:

Bisphenol A

DES:

Diethylstilbestrol

DNMT:

DNA (cytosine-5)-methyltransferase

DOHaD:

Developmental origins of health and disease

ER:

Estrogen receptor

HMD:

Histone demethylase

HMT:

Histone methyltransferase

References

  • Aguilera O, Fernandez AF, Munoz A, Fraga MF (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109:243–251

    Article  PubMed  CAS  Google Scholar 

  • Arici A, Sozen I (2003) Expression, menstrual cycle-dependent activation, and bimodal mitogenic effect of transforming growth factor-beta1 in human myometrium and leiomyoma. Am J Obstet Gynecol 188:76–83

    Article  PubMed  CAS  Google Scholar 

  • Baird DD, Newbold R (2005) Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol 20:81–84

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410:120–124

    Article  PubMed  CAS  Google Scholar 

  • Barker DJP (1994) Mothers, babies, and disease in later life. BMJ Publishing, London

    Google Scholar 

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  PubMed  CAS  Google Scholar 

  • Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL (2010) Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol 24:993–1006

    Article  PubMed  CAS  Google Scholar 

  • Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of HOXA10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382

    Article  PubMed  CAS  Google Scholar 

  • Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Cook JD, Davis BJ, Cai SL, Barrett JC, Conti CJ, Walker CL (2005) Interaction between genetic susceptibility and early-life environmental exposure determines tumor-suppressor-gene penetrance. Proc Natl Acad Sci U S A 102:8644–8649

    Article  PubMed  CAS  Google Scholar 

  • Cook JD, Davis BJ, Goewey JA, Berry TD, Walker CL (2007) Identification of a sensitive period for developmental programming that increases risk for uterine leiomyoma in Eker rats. Reprod Sci 14:121–136

    Article  PubMed  Google Scholar 

  • De Assis S, Hilakivi-Clarke L (2006) Timing of dietary estrogenic exposures and breast cancer risk. Ann N Y Acad Sci 1089:14–35

    Article  PubMed  Google Scholar 

  • Gillman MW (2005) Developmental origins of health and disease. N Engl J Med 353:1848–1850

    Article  PubMed  CAS  Google Scholar 

  • Greathouse KL, Cook JD, Lin K, Davis BJ, Berry TD, Bredfeldt TG, Walker CL (2008) Identification of uterine leiomyoma genes developmentally reprogrammed by neonatal exposure to diethylstilbestrol. Reprod Sci 15:765–778

    Article  PubMed  CAS  Google Scholar 

  • Greathouse KL, Bredfeldt T, Everitt JI, Lin K, Berry T, Kannan K, Mittelstadt ML, Ho SM, Walker CL (2012) Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis. Mol Cancer Res 10:546–557

    Google Scholar 

  • Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284:878–881

    Article  PubMed  CAS  Google Scholar 

  • Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    Article  PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    Article  PubMed  CAS  Google Scholar 

  • Li S, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, McLachlan JA, Negishi M (1997) Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res 57:4356–4359

    PubMed  CAS  Google Scholar 

  • Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC (2003) Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog 38:78–84

    Article  PubMed  CAS  Google Scholar 

  • McCampbell AS, Walker CL, Broaddus RR, Cook JD, Davies PJ (2008) Developmental reprogramming of IGF signaling and susceptibility to endometrial hyperplasia in the rat. Lab Invest 88:615–626

    Article  PubMed  CAS  Google Scholar 

  • McCampbell AS, Broaddus RR, Walker CL (2010) Loss of inhibitory insulin receptor substrate-1 phosphorylation: an early event in endometrial hyperplasia and progression to carcinoma. Cell Cycle 9:2698–2699

    Article  PubMed  CAS  Google Scholar 

  • McLachlan JA, Burow M, Chiang TC, Li SF (2001) Gene imprinting in developmental toxicology: a possible interface between physiology and pathology. Toxicol Lett 120:161–164

    Article  PubMed  CAS  Google Scholar 

  • National Cancer Institute (1999) DES research update 1999: current knowledge, future directions. Office of Science Policy of the National Cancer Institute

    Google Scholar 

  • Newbold RR, Bullock BC, McLachlan JA (1986) Adenocarcinoma of the rete testis. Diethylstilbestrol-induced lesions of the mouse rete testis. Am J Pathol 125:625–628

    PubMed  CAS  Google Scholar 

  • Newbold RR, Bullock BC, McLachlan JA (1987) Testicular tumors in mice exposed in utero to diethylstilbestrol. J Urol 138:1446–1450

    PubMed  CAS  Google Scholar 

  • Newbold RR, Bullock BC, McLachlan JA (1990) Uterine adenocarcinoma in mice following developmental treatment with estrogens: a model for hormonal carcinogenesis. Cancer Res 50:7677–7681

    PubMed  CAS  Google Scholar 

  • Newbold RR, Hanson RB, Jefferson WN (1997) Ontogeny of lactoferrin in the developing mouse uterus: a marker of early hormone response. Biol Reprod 56:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Palmer JR, Wise LA, Hatch EE, Troisi R, Titus-Ernstoff L, Strohsnitter W, Kaufman R, Herbst AL, Noller KL, Hyer M, Hoover RN (2006) Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15:1509–1514

    Article  PubMed  CAS  Google Scholar 

  • Prins GS (2008) Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer 15:649–656

    Article  PubMed  CAS  Google Scholar 

  • Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 185:93–98

    Article  PubMed  CAS  Google Scholar 

  • Russo J, Russo IH (2008) Breast development, hormones and cancer. Adv Exp Med Biol 630:52–56

    Article  PubMed  CAS  Google Scholar 

  • Schrager S, Potter BE (2004) Diethylstilbestrol exposure. Am Fam Physician 69:2395–2400

    PubMed  Google Scholar 

  • Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647:21–29

    Article  PubMed  CAS  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978

    Article  PubMed  CAS  Google Scholar 

  • Smallwood A, Esteve PO, Pradhan S, Carey M (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Tang WY, Newbold R, Mardilovich K, Jefferson W, Cheng RY, Medvedovic M, Ho SM (2008) Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 149:5922–5931

    Article  PubMed  CAS  Google Scholar 

  • Verloop J, van Leeuwen FE, Helmerhorst TJ, van Boven HH, Rookus MA (2010) Cancer risk in DES daughters. Cancer Causes Control 21:999–1007

    Article  PubMed  Google Scholar 

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  PubMed  CAS  Google Scholar 

  • Walker CL, Stewart EA (2005) Uterine fibroids: the elephant in the room. Science 308:1589–1592

    Article  PubMed  CAS  Google Scholar 

  • Wise LA, Palmer JR, Rowlings K, Kaufman RH, Herbst AL, Noller KL, Titus-Ernstoff L, Troisi R, Hatch EE, Robboy SJ (2005) Risk of benign gynecologic tumors in relation to prenatal diethylstilbestrol exposure. Obstet Gynecol 105:167–173

    Article  PubMed  Google Scholar 

  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl L. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walker, C.L. (2013). Developmental Reprogramming by Environmental Estrogens: How Early Life Exposures Affect Cancer Risk in Adulthood. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36827-1_12

Download citation

Publish with us

Policies and ethics