Skip to main content

6 Biological Control of Weeds with Fungi

  • Chapter
  • First Online:
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

Biological control of weeds with fungi involves the use of two distinct strategies: classical biological control (CBC) and inundative biological control (IBC). CBC follows the enemy release hypothesis, which posits that plant species in exotic habitats lack their full complement of coevolved natural enemies and thus are fitter and more competitive than the indigenous flora, enabling some species to become invasive and dominant. The CBC strategy is to introduce coevolved (obligate) fungal pathogens into the exotic-invaded region and to reduce competitiveness of the target weed, and thereby to restore the natural balance. Before release is sanctioned by the relevant authorities in the receiving country, a full history of the fungal CBC agent is a prerequisite. This forms the basis of the pest risk assessment, of which the principal objective is to demonstrate specificity to the target weed. Details of the concepts and protocols employed are presented in examples from past and present CBC programmes. IBC is based on the development of a product or mycoherbicide, incorporating an indigenous necrotrophic fungal pathogen that can be mass-produced and formulated, and applied in the same manner as a chemical herbicide. The safety record of CBC has been impeccable, the success rate has been high, and the prospects are encouraging. Conversely, IBC remains a minor player on the weed management stage, and products are targeted at niche markets, typically against invasive woody weeds in non-agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Aime MC (2006) Toward resolving family-level relationships in rust fungi (Uredinales). Mycoscience 47:112–122

    CAS  Google Scholar 

  • Alves JL, Pereira OL, Barreto RW (2008) Pseudocercospora cryptostegiae-madagascariensis sp. nov. on Cryptostegia madagascariensis, an exotic vine involved in major biological invasions in northeast Brazil. Mycopathologia 165:364–367

    Google Scholar 

  • Amsellem Z, Cohen BA, Gressel J (2002) Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat Biotechnol 20:1035–1039

    PubMed  CAS  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    PubMed  Google Scholar 

  • Anon (2009) Defra’s alien creepy-crawly that threatens our landscapes. Country Life August 12:2

    Google Scholar 

  • Anon (2012) Biopesticides: a global strategic business report (RPT 927963). Global Industry Analysts, http://www.companiesandmarkets.com. Accessed 25 May 2012

  • Ash GJ (2010) The science and art of successful bioherbicides. Biol Control 52:230–240

    Google Scholar 

  • Auld BA, Morin L (1995) Constraints in the development of bioherbicides. Weed Technol 9:638–652

    Google Scholar 

  • Ayres P (2005) Harry Marshall Ward and the fungal thread of death. APS Press, St. Paul

    Google Scholar 

  • Bacigalova K, Elias P, Srobarova A (1998) Puccinia komarovii a rust fungus on Impatiens parviflora in Slovakia. Biologia 53:7–13

    Google Scholar 

  • Bailey KL (2010) Canadian innovations in microbial biopesticides. Can J Plant Pathol 32:113–121

    CAS  Google Scholar 

  • Bailey KL, Falk S (2011) Turning research on microbial bioherbicides into commercial products – a Phoma story. Pest Technol 5:73–79

    Google Scholar 

  • Bailey KL, Chandler D, Grant WP, Greaves J, Prince G, Tatchell M (2010) The regulation of biopesticides: an international analysis. In: Bailey A, Chandler D, Grant WP, Greaves J, Prince G (eds) Biopesticides: pest management and regulation. CAB International, Wallingford, pp 148–176

    Google Scholar 

  • Bailey KL, Pitt WM, Leggett F, Sheedy C, Derby J (2011) Determining the infection process of Phoma macrostoma that leads to bioherbicidal activity on broadleaved weeds. Biol Control 59:268–276

    Google Scholar 

  • Barneby RC (1989) Reflections on typification and application of the names Mimosa pigra L. and M. asperata L. (Mimosaceae). Notes R Bot Gard Edinburgh 45:129–134

    Google Scholar 

  • Barratt BIP, Moeed A (2005) Environmental safety of biological control: policy and practice in New Zealand. Biol Control 35:247–252

    Google Scholar 

  • Barreto RW, Evans HC (1988) Taxonomy of a fungus introduced into Hawaii for biological control of Ageratina riparia (Eupatorieae; Compositae), with observations on related weed pathogens. Trans Br Mycol Soc 91:81–97

    Google Scholar 

  • Barreto RW, Evans HC (1995) The mycobiota of the weed Mikania micrantha in southern Brazil with particular reference to fungal pathogens for biological control. Mycol Res 99:343–352

    Google Scholar 

  • Barreto RW, Evans HC, Ellison CA (1995) The mycobiota of the weed Lantana camara in Brazil, with particular reference to biological control. Mycol Res 99:769–782

    Google Scholar 

  • Barton J (2004) How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biol Control 31:99–122

    Google Scholar 

  • Barton J (2012) Predictability of pathogen host range in classical biological control of weeds: an update. BioControl 57:289–305

    Google Scholar 

  • Barton J, Fowler SV (2008) Benefits to New Zealand’s native flora from the successful biological control of mistflower (Ageratina riparia). In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, p 361

    Google Scholar 

  • Barton J, Fowler SV, Gianotti AF, Winks CJ, de Beurs M, Arnold GC, Forrester G (2007) Successful biological control of mist flower (Ageratina riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biol Control 40:370–385

    Google Scholar 

  • Baskin Y (2002) A plague of rats and rubbervines. Island Press, Washington, DC

    Google Scholar 

  • Berner DK, Bruckart WL (2005) A decision tree for evaluation of exotic plant pathogens for classical biological control of introduced invasive weeds. Biol Control 34:222–232

    Google Scholar 

  • Berry C (2006) The precautionary principle – more sorry than safe. Sci Parliament 63:18–19

    Google Scholar 

  • Beste CE, Frank JR, Bruckart WL, Johnson DR, Potts WE (1992) Yellow nutsedge (Cyperus esculentus) control in tomato with Puccinia canaliculata and pebulate. Weed Technol 6:980–984

    CAS  Google Scholar 

  • Blumenthal DM (2006) Interactions between resource availability and enemy release in plant invasions. Ecol Letters 9:887–895

    Google Scholar 

  • Bourdôt G, Barton J, Hurrell G, Gianotti A, Saville D (2006) Chondrostereum purpureum and Fusarium tumidum, independently reduce regrowth in gorse (Ulex europaeus). Biocontrol Sci Technol 16:307–327

    Google Scholar 

  • Bowers RC (1986) Commercialization of Collego – an industrialist’s view. Weed Sci 34:24–25

    Google Scholar 

  • Boyetchko SM, Bailey KL, Hynes RK, Peng G (2007) Development of the mycoherbicide, BioMal®. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Wallingford, pp 274–283

    Google Scholar 

  • Boyette CD (2000) The bioherbicide approach: using plant pathogens to control weeds. In: Cobb AH, Kirkwood RC (eds) Herbicides and their mechanism of action. Sheffield University Academic Press, Sheffield, pp 134–152

    Google Scholar 

  • Bruzzese E, Hasan S (1983) A whole leaf clearing and staining technique for host specificity studies of rust fungi. Plant Pathol 32:335–338

    Google Scholar 

  • Burdon JJ, Groves RH, Cullen JM (1981) The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J Appl Ecol 8:857–866

    Google Scholar 

  • Burrows NJ, Lukitsch BV, Liberato JR (2012) Rediscovery of the rust Diabole cubensis, released as a biological control agent against the invasive weed Mimosa pigra in Australia. Australas Plant Pathol Notes 7:171–175

    Google Scholar 

  • Cannon PF (2007) Diabole cubensis. IMI Descr Fungi Bact 1725:1–3

    Google Scholar 

  • Carpenter JE, Gianessi L (2010) Economic impacts of glyphosate-resistant weeds. In: Nandula VK (ed) Glyphosate resistance in crops and weeds: history, development, and management. Wiley, Hoboken, pp 297–312

    Google Scholar 

  • Carruthers RI (2004) Biological control of invasive species, a personal perspective. Conserv Biol 18:54–57

    Google Scholar 

  • Carvalho CR, Fernandes RC, Carvalho GMA, Barreto RW, Evans HC (2011) Cryptosexuality and the genetic diversity paradox in coffee rust, Hemileia vastatrix. PLoS ONE 6:e26387, 7 pp

    Google Scholar 

  • CBD (2011) Text of the convention on biological diversity. htpp://www.cbd.int/convention/text. Accessed 29 Nov 2011

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Google Scholar 

  • Chew MK (2009) The monstering of Tamarisk: how scientists made a plant into a problem. J Hist Biol 42:231–266

    PubMed  Google Scholar 

  • Chittka L, Schürkens S (2001) Successful invasion of a floral market. Nature 411:653

    PubMed  CAS  Google Scholar 

  • Cock MJW (2010) Biopiracy rules should not block biological control. Nature 467:369

    PubMed  Google Scholar 

  • Cock MJW, Ellison CA, Evans HC, Ooi PAC (2000) Can failure be turned into success for biological control of mile-a-minute weed (Mikania micrantha)? In: Spencer NR (ed) Proceedings of the X international symposium biological control weeds. Montana State University Press, Bozeman, pp 155–167

    Google Scholar 

  • Cockayne AH (1915) California thistle rust. N Z J Agric 11:300–302

    Google Scholar 

  • Cox GW (1999) Alien species in North America and Hawaii: impacts on natural ecosystems. Island Press, Washington, DC

    Google Scholar 

  • Cripps MG, Edwards GR, Waipara NW, Fowler SV, Bourdôt GW (2008) The degree of polymorphism in Puccinia punctiformis virulence and Cirsium arvense resistance: implications for biological control. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, p 246

    Google Scholar 

  • Cripps MG, Bourdôt GW, Bailey KL (2012) Plant pathogens as biocontrol agents for Cirsium arvense – an answer to Műller and Nentwig. Neobiota 13:31–39

    Google Scholar 

  • Cronk QCB, Fuller JA (1995) Invasive plants: the threat to natural ecosystems worldwide. Chapman and Hall, London

    Google Scholar 

  • Cullen JM, Kable PF, Catt M (1973) Epidemic spread of a rust imported for biological control. Nature 244:262–264

    Google Scholar 

  • Culliney TW (2005) Benefits of classical biological control for managing invasive plants. Critical Rev Plant Sci 24:131–150

    Google Scholar 

  • Cunningham GH (1927) ‘Natural control’ of weeds and insects by fungi. Bull N Z Dept Agric 132:244–251

    Google Scholar 

  • Daniel JT, Templeton GE, Smith RJ, Fox WT (1973) Biological control of northern joinvetch in rice with an endemic fungal disease. Weed Sci 21:303–307

    Google Scholar 

  • Darwin C (1859) On the origin of species. Murray, London

    Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ et al (2011) Don’t judge species on their origins. Nature 474:153–154

    PubMed  CAS  Google Scholar 

  • Day MD, Kawi A, Tunabuna A, Fidelis J, Swamy B, Ratutuni J, Saul-Maura J, Dewhurst CF, Orapa W (2011) The distribution and socio-economic impacts of Mikania micrantha (Asteraceae) in Papua New Guinea and Fiji and prospects for its biocontrol. In: Proceedings of 23rd Asian-Pacific weed science society conference, Cairns, pp 146–153

    Google Scholar 

  • De Jong MD (2000) The BioChon story: deployment of Chondrostereum purpureum to suppress stump sprouting in hardwoods. Mycologist 14:58–62

    Google Scholar 

  • De Jong MD, Scheepens PC, Zadoks JC (1990) Risk analysis for biological control: a Dutch case studying biocontrol of Prunus serotina by the fungus Chondrostereum purpureum. Plant Dis 74:189–194

    Google Scholar 

  • de la Bastide PY, Hintz WE (2007) Developing the production system for Chondrostereum purpureum. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Wallingford, pp 291–299

    Google Scholar 

  • Demers AM, Berner DK, Backman PA (2006) Enhancing incidence of Puccinia punctiformis, through mowing, to improve management of Canada thistle (Cirsium arvense). Biol Control 39:481–488

    Google Scholar 

  • Dennill GB, Donnelly D, Stewart K, Impson FAC (1999) Insect agents used for the biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Fabaceae) in South Africa. Afr Entomol Mem 1:45–54

    Google Scholar 

  • Duke SO, Wedge DE, Cerdeira AL, Matallo MB (2007) Interactions of synthetic herbicides with plant disease and microbial herbicides. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Dordrecht, pp 277–296

    Google Scholar 

  • Ehlers R-U (2008) Regulation of biological weed biocontrol agents in Europe: results of the EU Policy Support Action REBECA. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 369–375

    Google Scholar 

  • Ehlers R-U (2011) Regulation of biological control agents and the EU Policy Support Action REBECA. In: Ehlers R-U (ed) Regulation of biological control agents. Springer, Dordrecht, pp 3–24

    Google Scholar 

  • Ellison CA (2001) Classical biological control of Mikania micrantha. In: Sankaran KV, Murphy ST, Evans HC (eds) Alien weeds in moist tropical zones: banes and benefits. Kerala Forestry Research Institute, Peechi, pp 131–138

    Google Scholar 

  • Ellison CA (2004) Biological control of weeds using fungal natural enemies: a new technology for weed management in tea? Int J Tea Sci 3:4–20

    Google Scholar 

  • Ellison CA, Barreto RW (2004) Prospects for the management of invasive alien weeds using co-evolved fungal pathogens: a Latin American perspective. Biol Invasions 6:23–45

    Google Scholar 

  • Ellison CA, Day M (2011) Current status of release of Puccinia spegazzinii for Mikania micrantha control. Biocontrol News Info 32:1N–2N

    Google Scholar 

  • Ellison CA, Evans HC, Ineson J (2004) The significance of intraspecies pathogenicity in the selection of a rust biotype for the classical biological control of Mikania micrantha (mile-a-minute weed) in Southeast Asia. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds) Proceedings of the XI international symposium biological control weeds. CSIRO Entomology, Canberra, pp 102–107

    Google Scholar 

  • Ellison CA, Pereira JM, Thomas SE, Barreto RW, Evans HC (2006) Studies on the rust Prospodium tuberculatum, a new classical biological control agent released against the invasive alien weed Lantana camara in Australia. I: life-cycle and infection parameters. Australas Plant Pathol 35:306–319

    Google Scholar 

  • Ellison CA, Evans HC, Djeddour DH, Thomas SE (2008) Biology and host range of the rust fungus Puccinia spegazzinii: a new classical biological control agent for the invasive, alien weed Mikania micrantha in India. Biol Control 45:133–145

    Google Scholar 

  • El-Sayed W (2005) Biological control of weeds with pathogens: current status and trends. J Plant Dis Prot 112:209–221

    Google Scholar 

  • Elton CS (1958) The ecology of invasions. Chapman and Hall, London

    Google Scholar 

  • Evans HC (1987a) Fungal pathogens of some tropical and subtropical weeds and the possibilities for biological control. Biocontrol News Info 8:7–30

    Google Scholar 

  • Evans HC (1987b) Life-cycle of Puccinia abrupta var. partheniicola, a potential biological control agent of Parthenium hysterophorus. Trans Br Mycol Soc 88:105–111

    Google Scholar 

  • Evans HC (1993) Studies on the rust Maravalia cryptostegiae, a potential biological control agent of rubber-vine weed Cryptostegia grandiflora (Asclepiadaceae: Periplocoideae), in Australia. I: Life cycle. Mycopathologia 124:163–174

    Google Scholar 

  • Evans HC (2000) Evaluating plant pathogens for biological control: an alternative view of pest risk assessment. Australas Plant Pathol 29:1–14

    Google Scholar 

  • Evans HC (2002a) Biological control of weeds. In: Kempken F (ed) The Mycota XI, agricultural applications. Springer, Berlin, pp 135–152

    Google Scholar 

  • Evans HC (2002b) Invasive neotropical pathogens of tree crops. In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Tropical mycology 2, Micromycetes. CAB International, Wallingford, pp 83–112

    Google Scholar 

  • Evans HC (2003) Biological control of invasive alien weeds using fungi, with particular reference to Rhododendron ponticum in the British Isles. In: Argent G, McFarlane M (eds) Rhododendrons in horticulture and science. Royal Botanic Garden Edinburgh, Edinburgh, pp 8–19

    Google Scholar 

  • Evans HC (2008) The endophyte-enemy release hypothesis: implications for classical biological control. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 20–25

    Google Scholar 

  • Evans HC, Ellison CA (2005) The biology and taxonomy of rust fungi associated with the neotropical vine Mikania micrantha, a major invasive weed in Asia. Mycologia 97:935–947

    PubMed  Google Scholar 

  • Evans HC, Tomley AJ (1996) Greenhouse and field evaluations of the rubber-vine rust, Maravalia cryptostegiae, on Madagascan and Australian Asclepiadaceae. In: Moran VC, Hoffmann JH (eds) Proceedings of the international symposium biological control weeds. Cape Town University Press, Cape Town, pp 165–169

    Google Scholar 

  • Evans HC, Waller JH (2010) Globalisation and the threat to biosecurity. In: Strange RN, Gullino ML (eds) The role of plant pathology in food safety and food security. Springer, Dordrecht, pp 53–71

    Google Scholar 

  • Evans HC, Carrión G, Guzman G (1993) A new species of Sphaerulina and its Phloeospora anamorph, with potential for biological control of Mimosa pigra. Mycol Res 97:59–67

    Google Scholar 

  • Evans HC, Carrión G, Ruiz-Belin F (1995) Mycobiota of the giant sensitive plant, Mimosa pigra sensu lato in the Neotropics. Mycol Res 99:420–428

    Google Scholar 

  • Evans HC, Frölich J, Shamoun SF (2002a) Biological control of weeds. In: Pointing SB, Hyde KD (eds) Bio-exploitation of filamentous fungi. Fungal Diversity Press, University of Hong Kong, Hong Kong, pp 349–401

    Google Scholar 

  • Evans HC, Greaves MP, Watson AK (2002b) Fungal biocontrol agents of weeds. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CAB International, Wallingford, pp 169–192

    Google Scholar 

  • Evans HC, Seier MK, Derby J-A, Falk S, Bailey KL (2013) Tracing the origins of White Tip disease of Cirsium arvense and its causal agent, Phoma macrostoma. Weed Res 53:42–52

    CAS  Google Scholar 

  • Fowler SV, Paynter Q, Dodd S, Groenteman R (2012) How can ecologists help practitioners minimize non-target effects in weed biocontrol? J Appl Ecol. doi:10.1111/j.1365-2664.2011.02106.x

    Google Scholar 

  • Frantzen J (1994) The role of clonal growth in the pathosystem Cirsium arvense: Puccinia punctiformis. Can J Bot 72:832–836

    Google Scholar 

  • Freeman TE, Charudattan R (1985) Conflicts in the use of plant pathogens as biocontrol agents of weeds. In: Delfosse ES (ed) Proceedings of the VI international symposium biological control weeds. Agriculture Canada, Ottawa, pp 351–357

    Google Scholar 

  • French RC, Lightfield AR (1990) Induction of systemic aecial infection in Canada thistle (Cirsium arvense) by teliospores of Puccinia punctiformis. Phytopathology 80:872–877

    Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol. doi:10.1016/j.tibtech.2012.01.003

    PubMed  Google Scholar 

  • Graupner PR, Carr A, Clancy E, Gilbert J, Bailey KL, Derby J, Gerwick BC (2003) The macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. J Nat Prod 66:1558–1561

    PubMed  CAS  Google Scholar 

  • Gressel J, Meir S, Herschkovitz Y, Al-Ahmad H, Greenspoon I, Babalola O, Amsellem Z (2007) Approaches to and success in developing transgenetically enhanced mycoherbicides. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Dordrecht, pp 297–305

    Google Scholar 

  • Groenteman R, Fowler SV, Sullivan JJ (2011) St. John’s wort beetles would not have been introduced to New Zealand: a retrospective host range test of New Zealand’s most successful weed biocontrol agents. Biol Control 57:50–58

    Google Scholar 

  • Guske S, Schulz B, Boyle C (2004) Biocontrol options for Cirsium arvense with indigenous fungal pathogens. Weed Res 44:107–116

    Google Scholar 

  • Hallett SG (2005) Where are the bioherbicides? Weed Sci 53:404–415

    CAS  Google Scholar 

  • Hart JA (1988) Rust fungi and host plant coevolution: do primitive hosts harbor primitive parasites? Cladistics 4:339–366

    Google Scholar 

  • Heard TA, Paynter Q (2009) Mimosa pigra L. (Leguminosae). In: Muniappan R, Reddy DVR, Raman A (eds) Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, UK, pp 256–273

    Google Scholar 

  • Hennecke B (2006) Failure of Diabole cubensis, a promising biological control agent, to establish in Australia. Biol Control 39:121–127

    Google Scholar 

  • Herren HR, Neuenschwander P (1991) Biological control of cassava pests in Africa. Annu Rev Entomol 36:257–283

    Google Scholar 

  • Herrera O, Major I (2006) Visitantes perigosos no Nordeste – Brasil Tropical. Ciência Hoje 38:42–44

    Google Scholar 

  • Heystek F, Wood AR, Neser S, Kistensamy Y (2011) Biological control of two Ageratina species (Asteraceae: Eupatorieae) in South Africa. Afr Entomol 19:208–216

    Google Scholar 

  • Hintz W (2007) Development of Chondrostereum purpureum as a mycoherbicide for deciduous bush control. In: Vincent C, Goettel MS, Lazarovits G (eds) Biological control: a global perspective. CAB International, Wallingford, pp 284–290

    Google Scholar 

  • Hoddle MS (2004a) Restoring the balance: using exotic species to control invasive exotic species. Conserv Biol 18:38–49

    Google Scholar 

  • Hoddle MS (2004b) The strength of biological control in the battle against invasive pests: a reply. Conserv Biol 18:61–64

    Google Scholar 

  • Hoffmann JH, Moran VC (2008) Assigning success in biological weed control: what do we really mean? In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 687–692

    Google Scholar 

  • Holden ANG, Mahlberg PG (1992) Application of chemotaxonomy of leafy spurges (Euphorbia spp.) in biological control. Can J Bot 70:1529–1536

    CAS  Google Scholar 

  • Holliday P (1989) A dictionary of plant pathology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds, distribution and biology. University Press of Hawaii, Honolulu

    Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Google Scholar 

  • Kenney DS (1986) DeVine – the way it was developed. Weed Sci 34:15–16

    Google Scholar 

  • Khuroo AA, Reshi ZA, Malik AH, Weber E, Rashid I, Dar GH (2012) Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biol Invasions 14:99–113

    Google Scholar 

  • Kumar PS, Rabindra RJ, Ellison CA (2008) Expanding classical biological control of weeds with pathogens in India: the way forward. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 163–172

    Google Scholar 

  • Kurose D, Renals T, Shaw R, Furuya N, Takagi M, Evans H (2006) Fallopia japonica, an increasingly intractable weed problem in the UK: can fungi help cut through this Gordian knot? Mycologist 20:126–129

    Google Scholar 

  • Kurose D, Evans HC, Djeddour DH, Cannon PF, Furuya N, Tsuchiya K (2009) Systematics of Mycosphaerella species associated with the invasive weed Fallopia japonica, including the potential biological control agent M. polygoni-cuspidati. Mycoscience 50:179–189

    Google Scholar 

  • Lambetini M, Leape J, Marton-Lefeuvre J, Mittermeier RA, Rose M, Robinson JG et al (2011) Invasives: a major conservation threat. Science 333:404–405

    Google Scholar 

  • Large EC (1940) The advance of the fungi. Jonathan Cape, London

    Google Scholar 

  • Le Roux J, Wieczorek AM (2009) Molecular systematic and population genetics of biological invasions: towards a better understanding of invasive species management. Ann Appl Biol 154:1–17

    Google Scholar 

  • Leather RI (1967) A catalogue of some plant diseases and fungi in Jamaica. Bull Min Ag Lands Jamaica 61:1–92

    Google Scholar 

  • Louda SM, Stiling P (2004) The double-edged sword of biological control in conservation and restoration. Conserv Biol 18:50–53

    Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Google Scholar 

  • Maier W, Wingfield BD, Menniken M, Wingfield MJ (2007) Polyphyly and two emerging lineages in the rust genera Puccinia and Uromyces. Mycol Res 111:176–185

    PubMed  Google Scholar 

  • Marohasy J, Forster PI (1991) A taxonomic revision of Cryptostegia R. Br. (Asclepiadaceae: Periplocoideae). Australas Syst Bot 4:571–577

    Google Scholar 

  • Martin N, Paynter Q (2010) Assessing the biosecurity risk from pathogens and herbivores to indigenous plants: lessons from biological control. Biol Invasions 12:3237–3248

    Google Scholar 

  • McCook S (2006) Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. J Global Hist 1:177–195

    Google Scholar 

  • McFadyen REC (1998) Biological control of weeds. Annu Rev Entomol 43:369–393

    PubMed  CAS  Google Scholar 

  • McFadyen REC (2008) Return on investment: determining the economic impact of biological control programmes. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 67–74

    Google Scholar 

  • McFadyen REC, Harvey GT (1990) Distribution and control of rubber-vine, Cryptostegia grandiflora, a major weed in northern Queensland. Plant Protect Q 5:152–155

    Google Scholar 

  • Meyer S (2006) The end of the wild. MIT Press, Cambridge, MA

    Google Scholar 

  • Miller ML, Aplet GH (2005) Applying legal sunshine to the hidden regulations of biological control. Biol Control 35:358–365

    Google Scholar 

  • Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627

    PubMed  CAS  Google Scholar 

  • Moore RJ (1975) The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Can J Plant Sci 55:1033–1048

    Google Scholar 

  • Morin L, Hill RL, Matayoshi S (1997) Hawaii’s successful biological control strategy for mist flower (Ageratina riparia) – can it be transferred to New Zealand? Biocontrol News Info 18:77N–88N

    Google Scholar 

  • Morin L, Evans KJ, Sheppard AW (2006) Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Australas J Entomol 45:349–365

    Google Scholar 

  • Morin L, Reid AM, Sims-Chilton NM, Buckley YM, Dhileepan K, Hastwell GT, Nordblom TL, Raghu S (2009) Review of approaches to evaluate the effectiveness of weed biological control agents. Biol Control 51:1–15

    Google Scholar 

  • Morin L, Evans KJ, Jourdan M, Gomez DR, Scott JK (2011) Use of a trap garden to find additional genetically distinct isolates of the rust fungus Phragmidium violaceum to enhance biological control of European blackberry in Australia. Eur J Plant Pathol 131:289–303

    Google Scholar 

  • Mortensen K (1988) The potential of an endemic fungus, Colletotrichum gloeosporioides, for biological control of round-leaved mallow (Malva pusilla) and velvetleaf (Abutilon theophasti). Weed Sci 36:473–478

    Google Scholar 

  • Mortensen K, Bailey KL (2002) Malva pusilla Smith, round-leaved mallow (Malvaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CAB International, Wallingford, pp 391–395

    Google Scholar 

  • Müller E, Nentwig W (2011) Plant pathogens as biocontrol agents of Cirsium arvense – an overestimated approach? Neobiota 11:1–24

    Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    PubMed  Google Scholar 

  • Muniappan R, Viraktamath CA (1993) Invasive alien weeds in the Western Ghats. Curr Sci 64:555–557

    Google Scholar 

  • MycoLogic (2011) Products: Chontrol peat paste. http://www.mycologic.ca/products/. Accessed 12 Dec 2011

  • Newcombe G, Dugan FM (2010) Fungal pathogens of plants in the Homogocene. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Berlin, pp 3–34

    Google Scholar 

  • O’Neill B (2004) More sorry than safe. http://www.spiked-online.com/Articles/0000000CA592htm. Accessed 29 Jun 2004

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    PubMed  Google Scholar 

  • Paganelli A, Gnazzo V, Acosta H, López SL, Carrasco AE (2010) Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signalling. Chem Res Toxicol 23:1586–1595

    PubMed  CAS  Google Scholar 

  • Page AR, Lacey KL (2006) Economic impact assessment of Australian weed biological control. Technical series 10, CRC for Australian Weed Management, Adelaide

    Google Scholar 

  • Palmer WA, Heard TA, Sheppard AW (2010) A review of Australian classical biological control of weeds programs and research activities over the past 12 years. Biol Control 52:271–287

    Google Scholar 

  • Pearson DE, Callaway RM (2003) Indirect effects of host specific biological control agents. Trends Ecol Evol 18:456–461

    Google Scholar 

  • Phatak SC (1992) Development and commercialization of the rust (Puccinia canaliculata) for biological control of yellow nutsedge. In: Richardson RG (ed) Proceedings of the 1st international weed control congress. Weed Science Society of Victoria, Frankston, pp 388–391

    Google Scholar 

  • Piskorz R, Klimko M (2006) The effect of Puccinia komarovii Tranzsch. infection on characters of Impatiens parviflora DC. Acta Soc Botanica Pol 75:51–59

    Google Scholar 

  • PMRA (2011) Pest Management Regulatory Agency, Evaluation report ERC2011-09, Phoma macrostoma strain 94-44B. Catalogue number H113-26/201109E-PDF. Online at http://www.hc-sc.gc.ca/cps-spc/pubs/pest/_decisions/erc2011-09/index-eng.php. Accessed 12 Apr 2012

  • Powles S, Duke SO (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365

    PubMed  CAS  Google Scholar 

  • Proffitt WT (2004) Legitimacy and adoption of a scientific biological control program: an institutional analysis of Hoddle. Conserv Biol 18:58–60

    Google Scholar 

  • Quimby PC (1982) Impact of plant diseases on plant populations. In: Charudattan R, Walker HL (eds) Biological control of weeds with plant pathogens. Wiley, New York, pp 47–60

    Google Scholar 

  • Relyea RA (2012) New effects of Roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol Appl 22:634–647

    PubMed  Google Scholar 

  • Ridings WH (1986) Biological control of stranglervine (Morrenia odorata Lindl.) in citrus – a researcher’s view. Weed Sci 34:31–32

    Google Scholar 

  • Ritschel A (2005) Monograph of the genus Hemileia. Bibl Mycol 200:1–132

    Google Scholar 

  • Rodriguez-Estrella R, Navarro JJP, Granados B, Rivera L (2010) The distribution of an invasive plant in a fragile ecosystem: rubber vine (Cryptostegia grandiflora) in oases of the Baja California peninsula. Biol Invasions 12:3389–3393

    Google Scholar 

  • Rosenzweig ML (2001) The four questions: what does the introduction of exotic species do to diversity? Evol Ecol Res 3:361–367

    Google Scholar 

  • Rudgers JA, Koskow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51

    Google Scholar 

  • Ryan MJ, Ellison CA (2002) Development of a cryopreservation protocol for the microcyclic rust fungus Puccinia spegazzinii. CryoLetters 24:43–48

    Google Scholar 

  • Sandel B, Dangremond EM (2011) Climate change and the invasion of California by grasses. Global Change Biol 18:277–289

    Google Scholar 

  • Sankaran KV, Puzari KC, Ellison CA, Kumar PS, Dev U (2008) Field release of the rust fungus Puccinia spegazzinii to control Mikania micrantha in India: protocols and raising awareness. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 384–389

    Google Scholar 

  • Savile DBO (1976) Evolution of the rust fungi (Uredinales) as reflected by their ecological problems. Evol Biol 9:137–207

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophyte continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Seier MK (2005) Fungal pathogens as classical biological control agents for invasive alien weeds – are they a viable concept for Europe? Neobiota 6:165–175

    Google Scholar 

  • Seier MK, Evans HC (1996) Two fungal pathogens of Mimosa pigra var. pigra from Mexico: the finishing touch for biological control of this weed in Australia? In: Moran VC, Hoffmann JH (eds) Proceedings of the IX international symposium biological control weeds. Cape Town University Press, Cape Town, pp 87–92

    Google Scholar 

  • Seier MK, Morin L, van der Merwe M, Evans HC, Romero A (2009) Are the microcyclic rust species Puccinia melampodii and Puccinia xanthii conspecific? Mycol Res 113:1271–1282

    PubMed  CAS  Google Scholar 

  • Service RF (2007) A growing threat down on the farm. Science 316:114–117

    Google Scholar 

  • Shaw D (2008) What chance classical biocontrol of weeds in Europe? Int Pest Control 50:165–168

    Google Scholar 

  • Shaw RH, Bryner S, Tanner R (2009) The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biol Control 49:105–113

    Google Scholar 

  • Shaw RH, Tanner R, Djeddour D, Cortat G (2011) Classical biological control of Fallopia japonica in the United Kingdom – lessons for Europe. Weed Res 51:552–558

    Google Scholar 

  • Sheppard AW, Hill R, DeClerck-Floate RA, McClay A, Olckers T, Quimby PC, Zimmermann HG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News Info 24:91N–108N

    Google Scholar 

  • Sheppard AW, Shaw RH, Sforza R (2006) Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res 46:93–117

    Google Scholar 

  • Simberloff D (2004) A rising tide of species and literature: a review of some recent books on biological invasions. Bioscience 54:247–254

    Google Scholar 

  • Simberloff D (2012) Risk of biological control for conservation purposes. BioControl 57:263–276

    Google Scholar 

  • Simberloff D, Genovesi P, PyÅ¡ek P, Campbell K (2011) Recognizing conservation success. Science 332:419

    PubMed  CAS  Google Scholar 

  • Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical perspectives. Phil Trans R Soc A 369:842–867

    PubMed  Google Scholar 

  • Tanner R, Ellison C, Shaw R, Evans H, Gange A (2008) Losing patience with Impatiens: are natural enemies the solution? Outlook Pest Manage 19:86–91

    Google Scholar 

  • TeBeest DO, Templeton GE (1985) Mycoherbicides: progress in the biological control of weeds. Plant Dis 69:6–10

    Google Scholar 

  • Templeton GE (1982) Biological herbicides: discovery, development, deployment. Weed Sci 30:430–433

    Google Scholar 

  • Templeton GE, TeBeest DO, Smith RJ (1979) Biological weed control with mycoherbicides. Annu Rev Phytopathol 17:301–310

    Google Scholar 

  • Tiley GED (2010) Biological flora of the British Isles: Cirsium arvense (L.) Scop. J Ecol 98:938–983

    Google Scholar 

  • Tomley AJ, Evans HC (2004) Establishment of, and preliminary impact studies on, the rust Maravalia cryptostegiae of the invasive alien weed, Cryptostegia grandiflora in Queensland. Australas Plant Pathol 53:475–484

    Google Scholar 

  • Trueman M, Atkinson R, Guézou A, Wurm P (2010) Residence time and human-mediated propagule pressure at work in the alien flora of the Galápagos. Biol Invasions 12:3949–3960

    Google Scholar 

  • Trujillo EE (1985) Biological control of Hamaku pa-makani with Cercosporella sp. in Hawaii. In: Delfosse ES (ed) Proceedings of the VI international symposium biological control weeds. Agriculture Canada, Ottawa, pp 661–671

    Google Scholar 

  • Trujillo EE (2005) History and success of plant pathogens for biological control of introduced weeds in Hawaii. Biol Control 33:113–122

    Google Scholar 

  • Turner PJ, Morin L, Williams DG, Kriticos DJ (2010) Interactions between a leafhopper and rust fungus on the invasive plant Asparagus asparagoides in Australia: a case of two agents being better than one for biological control. Biol Control 54:322–330

    Google Scholar 

  • Van Wilgen BW, de Wit MP, Andersen HJ, Le Maitre DC, Kotze IM, Ndala S, Brown B, Rapholo MB (2004) Costs and benefits of biological control of invasive alien plants: case studies from South Africa. S Afr J Sci 100:113–122

    Google Scholar 

  • Vartiamäki H, Uotila A, Vasaitis R, Hantula J (2008) Genetic diversity in Nordic and Baltic populations of Chondrostereum purpureum: a potential herbicide biocontrol agent. For Pathol 38:381–393

    Google Scholar 

  • Vince G (2011) Embracing invasives. Science 331:1383–1384

    PubMed  CAS  Google Scholar 

  • Vogler W, Lindsay A (2002) The impact of the rust fungus Maravalia cryptostegiae on three rubber-vine (Cryptostegia grandiflora) populations in tropical Queensland. In: Jacobs HS, Dodd J, Moore JH (eds) Proceedings of the 13th Australian weeds conference. Western Australian Plant Protection Society, Perth, pp 180–183

    Google Scholar 

  • Völker K, Boyle C (1994) Bean rust as a model system to evaluate efficiency of teliospore induction, especially in the potential mycoherbicide Puccinia punctiformis. Weed Res 34:275–281

    Google Scholar 

  • Vurro M, Evans HC (2008) Opportunities and constraints for the biological control of weeds in Europe. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 455–462

    Google Scholar 

  • Waipara NW, Barton J, Smith LA, Harman HM, Winks CJ, Massey B, Wilkie JP, Gianotti AF, Cripps MG (2009) Safety in New Zealand weed biocontrol: a nationwide pathogen survey for impacts on non-target plants. N Z Plant Prot 62:41–49

    Google Scholar 

  • Wapshere AJ (1974a) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211

    Google Scholar 

  • Wapshere AJ (1974b) Host specificity of phytophagous organisms and the evolutionary centres of plant genera and subgenera. Entomophaga 19:301–309

    Google Scholar 

  • Wapshere AJ (1989) A testing sequence for reducing rejection of potential biological control agents for weeds. Ann Appl Biol 114:515–526

    Google Scholar 

  • Warner KD (2012) Fighting pathophobia: how to construct constructive public engagement with biocontrol for nature without augmenting public fears. BioControl 57:307–317

    Google Scholar 

  • Warner KD, McNeill J, Getz C (2008) What every biocontrol researcher should know about the public. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XII international symposium biological control weeds. CAB International, Wallingford, pp 390–394

    Google Scholar 

  • Weaver MA, Lyn ME, Boyette CD, Hoagland RE (2007) Bioherbicides for weed control. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management. CAB International, Wallingford, pp 93–110

    Google Scholar 

  • Weidemann GJ (1991) Host-range testing: safety and science. In: TeBeest DO (ed) Microbial control of weeds. Chapman and Hall, New York, pp 83–96

    Google Scholar 

  • Wilson CL (1969) Use of plant pathogens in weed control. Annu Rev Phytopathol 7:422–434

    Google Scholar 

  • Wingfield BD, Ericson L, Szaro T, Burdon JJ (2004) Phylogenetic patterns in the Uredinales. Australas Plant Pathol 33:327–335

    Google Scholar 

  • Wood AR, Morris MJ (2007) Impact of the gall-forming fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa: 15 years of monitoring. Biol Control 41:68–77

    Google Scholar 

  • Woodhead SH (1981) Field efficacy of Phytophthora palmivora for control of milkweed vine. Phytopathology 71:913

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry C. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, H.C. (2013). 6 Biological Control of Weeds with Fungi. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36821-9_6

Download citation

Publish with us

Policies and ethics