Parameterized Design and Evaluation of Bandwidth Compressor for Floating-Point Data Streams in FPGA-Based Custom Computing

  • Tomohiro Ueno
  • Yoshiaki Kono
  • Kentaro Sano
  • Satoru Yamamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7806)


We are applying bandwidth compression to enhance performance of FPGA-based custom computing. This paper presents and evaluates hardware design of a bandwidth compressor and decompressor for a floating-point data stream of various bit width. We show their structures parameterized for a bit width of an input word. Through FPGA-based prototype implementation, we evaluate the resource utilization, frequency, and compression ratio. The expermental results show that the compressor and decompressor for 32-bit and 64-bit floating-point numbers achieve bandwidth reduction at a ratio of 3.1 and 1.8 for 2D data of fluid dynamics computation, while they require only small area and operate at higher than 200MHz.


bandwidth compression floating-point data stream custom computing parameterized design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    bzip2 (2010),
  2. 2.
    Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-precision floating-point data. IEEE Trans. on Computers 58(1), 18–31 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Engelson, V., Fritzson, D., Fritzson, P.: Lossless compression of high-volume numerical data from simulations. In: Proceedings of Data Compression Conference (DCC), pp. 574–586 (September 2000)Google Scholar
  4. 4.
    Franaszek, P.A., Lastras-Montaño, L.A., Peng, S., Robinson, J.T.: Data compression with restricted parsings. In: Proc. of the Data Compression Conf. (2006)Google Scholar
  5. 5.
    Healy, D., Mitchell, O.: Digital video bandwidth compression using block truncation coding. IEEE Trans. on Communications COM-29(12), 1809–1817 (1981)CrossRefGoogle Scholar
  6. 6.
    Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression and decompression of large n-dimensional scalar fields. In: Proceedings of Eurographics, vol. 22(3), pp. 343–348 (September 2003)Google Scholar
  7. 7.
    Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted floating-point geometry. Computer-Aided Design 37(8), 869–877 (2005)zbMATHCrossRefGoogle Scholar
  8. 8.
    Katahira, K., Sano, K., Yamamoto, S.: FPGA-based lossless compressors of floating-point data streams to enhance memory bandwidth. In: Proceedings of the International Conference on Application-specific Systems, Architectures and Processors, pp. 246–253 (July 2010)Google Scholar
  9. 9.
    Kono, Y., Sano, K., Yamamoto, S.: Scalability analysis of tightly-coupled FPGA-cluster for lattice boltzmann computation. In: Proc. of the 22nd Intl. Conf. on Field-Programmable Logic and Applications, pp. 120–127 (August 2012)Google Scholar
  10. 10.
    Lim, J.S., Oppenheim, A.V.: Enhancement and bandwidth compression of noisy speech. In: Proceedings of the IEEE, vol. 67(12), pp. 1586–1604 (December 1979)Google Scholar
  11. 11.
    Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Transactions on Visual and Computer Graphics 12(5), 1245–1250 (2006)CrossRefGoogle Scholar
  12. 12.
    Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific floating-point data. In: Proceedings of Data Compression Conference, pp. 133–142 (March 2006)Google Scholar
  13. 13.
    Sano, K., Hatsuda, Y., Yamamoto, S.: Scalable streaming-array of simple soft-processors for stencil computations with constant memory-bandwidth. In: Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines, pp. 234–241 (May 2011)Google Scholar
  14. 14.
    Sano, K., Katahira, K., Yamamoto, S.: Segment-parallel predictor for FPGA-based hardware compressor and decompressor of floating-point data streams to enhance memory i/o bandwidth. In: Proceedings of the Data Compression Conference, pp. 416–425 (March 2010)Google Scholar
  15. 15.
    Sukhwani, B., Abali, B., Brezzo, B., Asaad, S.: High-throughput, lossless data compression on FPGAs. In: 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 113–116 (May 2011)Google Scholar
  16. 16.
    Terasic Technologies,
  17. 17.
    The GNU MPFR Library,
  18. 18.
    Tomari, H., Inaba, M., Hiraki, K.: Compressing floating-point number stream for numerical applications. In: 2010 First International Conference on Networking and Computing, pp. 112–119 (November 2010)Google Scholar
  19. 19.
    Tremaine, R.B., Franaszek, P.A., Robinson, J.T., Schulz, C.O., Smith, T.B., Wazlowski, M.E., Bland, P.M.: Ibm memory expansion technology (mxt). IBM Journal of Research and Development 45(2), 271–285 (2001)CrossRefGoogle Scholar
  20. 20.
    Ueno, T., Kono, Y., Sano, K., Yamamoto, S.: FPGA-based implementation of compact compressor and decompressor of floating-point data-stream for bandwidth reduction. In: Proceedings of the 2012 International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA 2012) (July 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomohiro Ueno
    • 1
  • Yoshiaki Kono
    • 1
  • Kentaro Sano
    • 1
  • Satoru Yamamoto
    • 1
  1. 1.Graduate School of Information SciencesTohoku UniversityAoba-kuJapan

Personalised recommendations