An Architecture for IPv6 Lookup Using Parallel Index Generation Units

  • Hiroki Nakahara
  • Tsutomu Sasao
  • Munehiro Matsuura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7806)


This paper shows an area-efficient and high-speed architecture for IPv6 lookup using a parallel index generation unit (IGU). To reduce the size of memory in the IGU, we use a liner transformation and a row-shift decomposition. Also, this paper shows a design method for the parallel IGU. A single memory realization requires O(2 n ) memory size, where n denotes the length of prefix, while the IGU requires O(nk) memory size, where k denotes the number of prefixes. In IPv6 prefix lookup, since n is at most 64 and k is about 340 K, the IGU drastically reduces the memory size. Since the parallel IGU has a simple architecture compared with existing ones, it performs lookup by using complete pipelines. We loaded more than 340 K IPv6 pseudo prefixes on the Xilinx Virtex 6 FPGA. Its lookup speed is higher than one giga lookups per second (GLPS). As for the normalized area and lookup speed, our implementation outperforms existing FPGA implementations.


Main Memory Index Generation Memory Size Border Gateway Protocol IPv6 Address 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baboescu, F., Tullsen, D.M., Rosu, G., Singh, S.: A tree based router search engine architecture with single port memories. In: ISCA 2005, p. 123 (2005)Google Scholar
  2. 2.
    Chao, H.J., Liu, B.: High performance switches and routers. JohnWiley& Sons, Inc., Hoboken (2007)CrossRefGoogle Scholar
  3. 3.
    Fadishei, H., Zamani, M.S., Sabaei, M.: A novel reconfigurable hardware architecture for IP address lookup. In: ANCS 2005, pp. 81–90 (2005)Google Scholar
  4. 4.
    Le, H., Prasanna, V.K.: Scalable tree-based architectures for IPv4/v6 lookup using prefix partitioning. IEEE Trans. on Compt. 61(7), 1026–1039 (2012)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Le, H., Prasanna, V.K.: Scalable high throughput and power efficient IP-lookup on FPGA. In: FCCM 2009 (April 2009)Google Scholar
  6. 6.
    University of Oregon route views project,
  7. 7.
    Sasao, T.: Row-shift decompositions for index generation functions. In: DATE 2012, pp. 1585–1590 (2012)Google Scholar
  8. 8.
    Sasao, T.: Linear decomposition of index generation functions. In: ASPDAC 2012, pp. 781–788 (2012)Google Scholar
  9. 9.
    Sasao, T.: Memory-based logic synthesis. Springer (2011)Google Scholar
  10. 10.
    Sasao, T., Matsuura, M., Nakahara, H.: A realization of index generation functions using modules of uniform sizes. In: IWLS 2010, June 18-20, pp. 201–208 (2010)Google Scholar
  11. 11.
    Sasao, T.: On the number of variables to represent sparse logic functions. In: ICCAD 2008, San Jose, California, USA, November 10-13, pp. 45–51 (2008)Google Scholar
  12. 12.
    Sasao, T., Butler, J.T.: Implementation of multiple-valued CAM functions by LUT cascades. In: ISMVL 2006, Singapore, May 17-20 (2006)Google Scholar
  13. 13.
    Tarjan, R.E., Yao, A.C.-C.: Storing a sparse table. Communications of the ACM 22(11), 606–611 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Tucker, R.: Optical packet-switched WDM networks: a cost and energy perspective. In: OFC/NFOEC (2008)Google Scholar
  15. 15.
    Wang, M., Deering, S., Hain, T., Dunn, L.: Non-random generator for IPv6 tables. In: HOTI 2004, pp. 35–40 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hiroki Nakahara
    • 1
  • Tsutomu Sasao
    • 2
  • Munehiro Matsuura
    • 2
  1. 1.Kagoshima UniversityJapan
  2. 2.Kyushu Institute of TechnologyJapan

Personalised recommendations