Skip to main content

Congenital heart disease in adults

  • Chapter
Three-dimensional Echocardiography

Abstract

Due to the success of cardiac surgery in infancy and childhood, starting some 40 years ago and improving ever since, the sur vival for patients with congenital heart disease has improved dramatically. Over 85% of all patients born with a congenital cardiac defect now survive beyond childhood, often well into adult life. Many of these patients have residual abnormalities, which may be morphological, functional or (most often) both, and these residua tend to change with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balestrini L, Fleishman C, Lanzoni L et al (2000) Real-time 3-dimensional echocardiography evaluation of congenital heart disease. J Am Soc Echocardiogr 13:171–176

    Article  CAS  PubMed  Google Scholar 

  2. Altmann K, Shen Z, Boxt LM et al (1997) Comparison of three-dimensional echocardiographic assessment of volume, mass, and function in children with functionally single left ventricles with two-dimensional echocardiography and magnetic resonance imaging. Am J Cardiol 80:1060–1065

    Article  CAS  PubMed  Google Scholar 

  3. van den Bosch AE, , Robbers-Visser D, , Krenning BJ et al (2006) Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. J Am Soc Echocardiogr 19:1–6

    Google Scholar 

  4. Riehle TJ, Mahle WT, Parks WJ et al (2008) Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 21:78–83

    Article  PubMed  Google Scholar 

  5. Raedle-Hurst TM, Mueller M, Rentzsch A et al (2009) Assessment of left ventricular dyssynchrony and function using real-time 3-dimensional echocardiography in patients with congenital right heart disease. Am Heart J 157:791–798

    Article  PubMed  Google Scholar 

  6. Simpson JM, Miller O (2011) Three-dimensional echocardiography in congenital heart disease. Arch Cardiovasc Dis 104:45–56

    Article  PubMed  Google Scholar 

  7. Broberg C, Meadows AK (2011) Advances in imaging: the impact on the care of the adult with congenital heart disease. Prog Cardiovasc Dis 53:293–304

    Article  PubMed  Google Scholar 

  8. Seo JS, Song JM, Kim YH et al (2012) Effect of atrial septal defect shape evaluated using three-dimensional transesophageal echocardiography on size measurements for percutaneous closure. J Am Soc Echocardiogr 25:1031–1040

    Article  PubMed  Google Scholar 

  9. Saric M, Perk G, PurgessJR, Kronzon I (2010) Imaging atrial septal defects by real-time three-dimensional transesophageal echocardiography: step-by-step approach. J Am Soc Echocardiogr 23:1128–1135

    Article  PubMed  Google Scholar 

  10. Marx GR, Fulton DR, Pandian NG et al (1995) Delineation of site, relative size and dynamic geometry of atrial septal defects by real-time threedimensional echocardiography. J Am Coll Cardiol 25:482–490

    Article  CAS  PubMed  Google Scholar 

  11. Roberson DA, Cui W, Patel D et al (2011) Three-dimensional transesophageal echocardiography of atrial septal defect: a qualitative and quantitative anatomic study. J Am Soc Echocardiogr 24:600–610

    Article  PubMed  Google Scholar 

  12. Mathewson JW, Bichell D, Rothman A, Ing FF (2004) Absent posteroinferior and anterosuperior atrial septal defect rims: Factors affecting nonsurgical closure of large secundum defects using the Amplatzer occluder. J Am Soc Echocardiogr 17:62–69

    Article  PubMed  Google Scholar 

  13. van den Bosch AE, , Ten Harkel DJ, , McGhie JS et al (2006) Characterization of atrial septal defect assessed by real-time 3-dimensional echocardiography. J Am Soc Echocardiogr 19:815–821

    Google Scholar 

  14. Franke A, Kuhl HP, Rulands D et al (1997) Quantitative analysis of the morphology of secundum-type atrial septal defects and their dynamic change using transesophageal three-dimensional echocardiography. Circulation 96:II–7

    Google Scholar 

  15. Mehmood F, Vengala S, Nanda NC et al (2004) Usefulness of live threedimensional transthoracic echocardiography in the characterization of atrial septal defects in adults. Echocardiography 21:707–713

    Article  PubMed  Google Scholar 

  16. Acar P, Massabuau P, Elbaz M (2008) Real-time 3D transoesophageal echo cardiography for guiding Amplatzer septal occluder device deployment in an adult patient with atrial septal defect. Eur J Echocardiogr 9:822–823

    Article  PubMed  Google Scholar 

  17. Lodato JA, Cao QL, Weinert L et al (2009) Feasibility of real-time threedimensional transoesophageal echocardiography for guidance of percutaneous atrial septal defect closure. Eur J Echocardiogr 10:543–548

    Article  PubMed  Google Scholar 

  18. Chen FL, Hsiung MC, Nanda N et al (2006) Real time three-dimensional echocardiography in assessing ventricular septal defects: an echocardiographic- surgical correlative study. Echocardiography 23:562–568

    Article  PubMed  Google Scholar 

  19. Mehmood F, Miller AP, Nanda et al (2006) Usefulness of live/real time three-dimensional transthoracic echocardiography in the characterization of ventricular septal defects in adults. Echocardiography 23:421–427

    Article  PubMed  Google Scholar 

  20. Hsu JH, Wu JR, Dai ZK, Lee MH (2007) Real-time three-dimensional echocardiography provides novel and useful anatomic insights of perimembranous ventricular septal aneurysm. Int J Cardiol 118:326–331

    Article  PubMed  Google Scholar 

  21. van den Bosch AE, Ten Harkel DJ, , McGhie JS et al (2006) Feasibility and accuracy of real-time 3-dimensional echocardiographic assessment of ventricular septal defects. J Am Soc Echocardiogr 19:7–13

    Google Scholar 

  22. Seliem MA, Fedec A, Szwast A et al (2007) Atrioventricular valve morphology and dynamics in congenital heart disease as imaged with real-time 3-dimensional matrix-array echocardiography: comparison with 2-dimensional imaging and surgical findings. J Am Soc Echocardiogr 20:869–876

    Article  PubMed  Google Scholar 

  23. van den Bosch AE, , Ten Harkel DJ, , McGhie JS et al (2006) Surgical validation of real-time transthoracic 3D echocardiographic assessment of atrioventricular septal defects. Int J Cardiol 112:213–218

    Google Scholar 

  24. Takahashi K, Mackie AS, Thompson R et al (2012) Quantitative real-time three-dimensional echocardiography provides new insight into the mechanisms of mitral valve regurgitation post-repair of atrioventricular septal defect. J Am Soc Echocardiogr 25:1231–1244

    Article  PubMed  Google Scholar 

  25. Kutty S, Smallhorn JF (2012) Evaluation of atrioventricular septal defects by threedimensional echocardiography: benefits of navigating the third dimension. J Am Soc Echocardiogr 25:932–944

    Article  PubMed  Google Scholar 

  26. Anwar AM, Geleijnse ML, Ten Cate FJ, Meijboom FJ (2006) Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg 5:683–687

    Article  PubMed  Google Scholar 

  27. Paranon S, Acar P. Ebstein's anomaly of the tricuspid valve: from fetus to adult: congenital heart disease. Heart. 2008 Feb;94(2):237–243

    Article  PubMed  Google Scholar 

  28. van der Hulst AE et al. Real-time three-dimensional echocardiography: segmental analysis of the right ventricle in patients with repaired tetralogy of fallot. J Am Soc Echocardiogr. 2011 Nov;24(11):1183–1190

    Article  Google Scholar 

  29. Miyamoto, K., et al., Detection of discrete subaortic stenosis by 3-dimensional transesophageal echocardiography. Echocardiography, 2005. 22(9):783–784

    Article  PubMed  Google Scholar 

  30. Anwar AM, McGhie JS, Meijboom FJ, ten Cate FJ (2008) Double orifice mitral valve by real-time three-dimensional echocardiography. Eur J Echocardiogr 9:731–732

    Article  PubMed  Google Scholar 

  31. Nomoto K, Hollinger I, DiLuozzo G, Fischer GW (2009) Recognition of a cleft mitral valve utilizing real-time three-dimensional transoesophageal echocardiography. Eur J Echocardiogr 10:367–369

    Article  PubMed  Google Scholar 

  32. Sivaprakasam MC, Vettukattil JJ (2006) 3-D echocardiographic imaging of double aortic arch. Eur J Echocardiogr 7:476–477

    Article  CAS  PubMed  Google Scholar 

  33. Guerra VC, Coles J, Smallhorn JF (2005) Aneurysm of right atrium diagnosed by 3-dimensional real-time echocardiogram. J Am Soc Echocardiogr 18:1221

    Article  Google Scholar 

  34. Acar P, Abadir S, Bassil R (2007) Images in congenital heart disease. Infective endocarditis of the patent oval fossa assessed by three-dimensional echocardiography. Cardiol Young 17:113

    Article  Google Scholar 

  35. Patel V, Nanda NC, Arellano I et al (2006) Cor triatriatum sinister: assessment by live/real time three-dimensional transthoracic echocardiography. Echocardiography 23:801–802

    Article  PubMed  Google Scholar 

  36. van der Zwaan HB Geleijnse ML, , Soliman OI et al (2011) Test-retest variability of volumetric right ventricular measurements using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 24:671–679

    Google Scholar 

  37. van der Zwaan HB, , Helbing WA, , Boersma E et al (2010) Usefulness of real-time three-dimensional echocardiography to identify right ventricular dysfunction in patients with congenital heart disease. Am J Cardiol 106:843–850

    Google Scholar 

  38. van der Zwaan HB, , Helbing WA, , McGhie JS et al (2010) Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 23:134–140

    Google Scholar 

  39. Khoo NS, Young A, Occleshaw C et al (2009) Assessments of right ventricular volume and function using threedimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 22:1279–1288

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meijboom, F., van der Zwaan, H., McGhie, J. (2015). Congenital heart disease in adults. In: Buck, T., Franke, A., Monaghan, M. (eds) Three-dimensional Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36799-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36799-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36798-4

  • Online ISBN: 978-3-642-36799-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics