Skip to main content

Monitoring and guiding cardiac interventions and surgery

  • Chapter
Three-dimensional Echocardiography

Abstract

Recent advances in a number of surgical and catheter-based therapeutic approaches in cardiology have allowed less invasive treatment with a better prognosis even in complex cases. These techniques include electrophysiological examination and ablation, surgical and transcatheter mitral valve repair as well as transfemoral aortic valve implantation, and percutaneous closure of atrial appendage, septal defects, and paravalvular leaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zamorano JL, Badano LP, Bruce C et al (2011) EAE/ASE recommendations for the use of echocardiography in new transcatheter interventions for valvular heart disease. Eur J Echocardiogr 12:557–584

    Google Scholar 

  2. Amitai ME, Schnittger I, Popp RL et al (2007) Comparison of threedimensional echocardiography to two-dimensional echocardiography and fluoroscopy for monitoring of endomyocardial biopsy. Am J Cardiol 99:864–866

    Google Scholar 

  3. Roman KS, Nii M, Golding F et al (2004) Images in cardiovascular medicine. Real-time subcostal 3-dimensional echocardiography for guided per cutaneous atrial septal defect closure. Circulation 109:e320–e321

    Google Scholar 

  4. Bartel T, Konorza T, Arjumand J et al (2003) Intracardiac echocardiography is superior to conventional monitoring for guiding device closure of in teratrial communications. Circulation 107:795–797

    Google Scholar 

  5. Knackstedt C, Mischke K, Frechen D et al (2007) The role of intracardiac echocardiography in interventional electrophysiology. Minerva Cardioangiol 55:755–770

    Google Scholar 

  6. Kim SS, Hijazi ZM, Lang RM, Knight BP (2009) The use of intracardiac echo cardiography and other intracardiac imaging tools to guide noncoronary cardiac interventions. J Am Coll Cardiol 53:2117–2128

    Google Scholar 

  7. Szili-Torok T, Bosch JG (2011) Transnasal transoesophageal ultrasound: the end of the intracardiac echocardiography age? Europace 13:7–8

    Google Scholar 

  8. Lang RM, Badano LP, Tsang W et al (2012) EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 13:1–46

    Google Scholar 

  9. Grewal J, Mankad S, Freeman WK et al (2009) Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J Am Soc Echocardiogr 22:34–41

    Google Scholar 

  10. Sugeng L, Shernan SK, Weinert L et al (2008) Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves. J Am Soc Echocardiogr 21:1347–1354

    Google Scholar 

  11. Hien MD, Rauch H, Lichtenberg A et al (2013) Real-time three-dimensional transesophageal echocardiography: improvements in intraoperative mitral valve imaging. Anesth Analg 2013; 116:287–295

    Google Scholar 

  12. Chikwe J, Adams DH, Su KN et al (2012) Can three-dimensional echocardio graphy accurately predict complexity of mitral valve repair? Eur J Cardiothorac Surg 41:518–524

    Google Scholar 

  13. Vegas A, Meineri M (2010) Core review: three-dimensional transesophageal echocardiography is a major advance for intraoperative clinical management of patients undergoing cardiac surgery: a core review. Anesth Analg 110:1548–1573

    Google Scholar 

  14. Shernan SK (2009) Intraoperative three-dimensional echocardiography: ready for primetime? J Am Soc Echocardiogr 22:27A–28A

    Google Scholar 

  15. Gripari P, Tamborini G, Barbier P et al (2010) Real-time three-dimensional transoesophageal echocardiography: a new intraoperative feasible and useful technology in cardiac surgery. Int J Cardiovasc Imaging 26:651–660

    Google Scholar 

  16. Fischer GW, Adams DH (2008) Real-time three-dimensional TEE-guided repair of a paravalvular leak after mitral valve replacement. Eur J Echocardiogr 9:868–869

    Google Scholar 

  17. Ender J, Koncar-Zeh J, Mukherjee C et al (2008) Value of augmented reality-enhanced transesophageal echocardiography (TEE) for determining optimal annuloplasty ring size during mitral valve repair. Ann Thorac Surg 86:1473–1478

    Google Scholar 

  18. Seo JS, Song JM, Kim YH et al (2012) Effect of atrial septal defect shape evaluated using three-dimensional transesophageal echocardiography on size measurements for percutaneous closure. J Am Soc Echocardiogr 25:1031–1140

    Google Scholar 

  19. Chen FL, Hsiung MC, Hsieh KS et al (2006) Real time three-dimensional transthoracic echocardiography for guiding Amplatzer septal occlude device deployment in patients with atrial septal defect. Echocardiography 23:763–770

    Google Scholar 

  20. Acar P, Massabuau P, Elbaz M (2008) Real-time 3D transoesophageal echocardiography for guiding Amplatzer septal occluder device deployment in an adult patient with atrial septal defect. Eur J Echocardiogr 9:822–823

    Google Scholar 

  21. Perk G, Lang RM, Garcia-Fernandez MA et al (2009) Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions. J Am Soc Echocardiogr 22:865–882

    Google Scholar 

  22. Balzer J, Kuhl H, Rassaf T et al (2008) Real-time transesophageal threedimensional echocardiography for guidance of percutaneous cardiac interventions: first experience. Clin Res Cardiol 97:565–574

    Google Scholar 

  23. Balzer J, Kuhl H, Franke A (2008) Real-time three-dimensional transoesophageal echocardiography for guidance of atrial septal defect closures. Eur Heart J 29:2226

    Google Scholar 

  24. Balzer J, Kelm M, Kuhl HP (2009) Real-time three-dimensional transoesophageal echocardiography for guidance of non-coronary interventions in the catheter laboratory. Eur J Echocardiogr 10:341–349

    Google Scholar 

  25. Martin-Reyes R, Lopez-Fernandez T, Moreno-Yanguela M et al (2009) Role of real-time three-dimensional transoesophageal echocardiography for guiding transcatheter patent foramen ovale closure. Eur J Echocardiogr 10:148–150

    Google Scholar 

  26. Lodato JA, Cao QL, Weinert L et al (2009) Feasibility of real-time threedimensional transoesophageal echocardiography for guidance of percutaneous atrial septal defect closure. Eur J Echocardiogr 10:543–548

    Google Scholar 

  27. Taniguchi M, Akagi T, Watanabe N et al (2009) Application of real-time three-dimensional transesophageal echocardiography using a matrix array probe for transcatheter closure of atrial septal defect. J Am Soc Echocardiogr 22:1114–1120

    Google Scholar 

  28. Taniguchi M, Akagi T, Kijima Y, Sano S (2013) Clinical advantage of real-time three-dimensional transesophageal echo-cardiography for transcatheter closure of multiple atrial septal defects. Int J Cardiovasc Imaging 29:1273–1280

    Google Scholar 

  29. Lopez AL, Palomas JL, Rubio DM, Ortiz MR (2011) Three-dimensional echo cardiography-guided repair of residual shunt after percutaneous atrial septal defect closure. Echocardiography 28:E64-E67

    Google Scholar 

  30. Balzer J, van Hall S, Rassaf T et al (2010) Feasibility, safety, and efficacy of real-time three-dimensional transoesophageal echocardiography for guiding device closure of interatrial communications: initial clinical experience and impact on radiation exposure. Eur J Echocardiogr 11:1–8

    Google Scholar 

  31. Acar P, Abdel-Massih T, Douste-Blazy MY et al (2002) Assessment of muscular ventricular septal defect closure by transcatheter or surgical approach: a three-dimensional echocardiographic study. Eur J Echocardiogr 3:185–191

    Google Scholar 

  32. Acar P, Abadir S, Aggoun Y (2007) Transcatheter closure of perimembranous ventricular septal defects with Amplatzer occluder assessed by real-time three-dimensional echocardiography. Eur J Echocardiogr 8:110–115

    Google Scholar 

  33. Tighe DA, Paul JJ, Maniet AR et al (1997) Survival in infarct related intramyocardial dissection importance of early echocardiography and prompt surgery. Echocardiography 14:403–408

    Google Scholar 

  34. Kakouros N, Brecker SJD (2009) Device closure for ventricular septal defect after myocardial infarction. Cardiac Interventions Today 43–49

    Google Scholar 

  35. Halpern DG, Perk G, Ruiz C et al (2009) Percutaneous closure of a postmyocardial infarction ventricular septal defect guided by real-time three-dimensional echocardiography. Eur J Echocardiogr 10:569–571

    Google Scholar 

  36. Charakida M, Qureshi S, Simpson JM (2013) 3D echocardiography for planning and guidance of interventional closure of VSD. JACC Cardiovasc Imaging 6:120–123

    Google Scholar 

  37. Grube E, Schuler G, Buellesfeld L et al (2007) Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J Am Coll Cardiol 50:69–76

    Google Scholar 

  38. Leon MB, Smith CR, Mack M et al (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363:1597–1607

    Google Scholar 

  39. Makkar RR, Fontana GP, Jilaihawi H et al (2012) Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med 366: 1696–1704

    Google Scholar 

  40. Smith LA, Monaghan MJ (2013) Monitoring of procedures: peri-interventional echo assessment for transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging 14:840–850

    Google Scholar 

  41. Chin D (2009) Echocardiography for transcatheter aortic valve implantation. Eur J Echocardiogr 10:i21–i29

    Google Scholar 

  42. Moss RR, Ivens E, Pasupati S et al (2008) Role of echocardiography in percutaneous aortic valve implantation. JACC Cardiovasc Imaging 1:15–24.

    Google Scholar 

  43. Janosi RA, Kahlert P, Plicht B et al (2009) Guidance of percutaneous transcatheter aortic valve implantation by real-time three-dimensional transeso phageal echocardiography - A single-center experience. Minim Invasive Ther Allied Technol 142–148

    Google Scholar 

  44. Janosi RA, Kahlert P, Plicht B et al (2011) Measurement of the aortic annulus size by real-time three-dimensional transesophageal echocardio graphy. Minim Invasive Ther Allied Technol 20:85–94

    Google Scholar 

  45. Ng AC, Delgado V, van der KF et al (2010) Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circ Cardiovasc Imaging 3:94–102

    Google Scholar 

  46. Santos N, de Agustin JA, Almeria C et al (2012) Prosthesis/annulus discon gruence assessed by three-dimensional transoesophageal echocardio graphy: a predictor of significant paravalvular aortic regurgitation after transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging 13:931–937

    Google Scholar 

  47. Jilaihawi H, Doctor N, Kashif M et al (2013) Aortic annular sizing for trans catheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol 61:908–916

    Google Scholar 

  48. Husser O, Rauch S, Endemann DH et al (2012) Impact of three-dimensional transesophageal echocardiography on prosthesis sizing for transcatheter aortic valve implantation. Catheter Cardiovasc Interv 80:956– 963

    Google Scholar 

  49. Smith LA, Dworakowski R, Bhan A et al (2013) Real-time three-dimensional transesophageal echocardiography adds value to transcatheter aortic valve implantation. J Am Soc Echocardiogr 26:359–369

    Google Scholar 

  50. Masson JB, Kovac J, Schuler G et al (2009) Transcatheter aortic valve implantation: review of the nature, management, and avoidance of procedural complications. JACC Cardiovasc Interv 2:811–820

    Google Scholar 

  51. Calleja A, Thavendiranathan P, Ionasec RI et al (2013) Automated quantitative 3-dimensional modeling of the aortic valve and root by 3-dimensional transesophageal echocardiography in normals, aortic regurgitation, and aortic stenosis: comparison to computed tomography in normal and clinical implications. Circ Cardiovasc Imaging 6:99–108

    Google Scholar 

  52. Goncalves A, Almeria C, Marcos-Alberca P et al (2012) Three-dimensional echocardiography in paravalvular aortic regurgitation assessment after transcatheter aortic valve implantation. J Am Soc Echocardiogr 25:47–55

    Google Scholar 

  53. Gripari P, Ewe SH, Fusini L et al (2012) Intraoperative 2D and 3D transoesophageal echocardiographic predictors of aortic regurgitation after transcatheter aortic valve implantation. Heart 98:1229–1236

    Google Scholar 

  54. Cubeddu RJ, Palacios IF (2010) Percutaneous techniques for mitral valve disease. Cardiol Clin 28:139–153

    Google Scholar 

  55. Feldman T, Cilingiroglu M (2011) Percutaneous leaflet repair and annuloplasty for mitral regurgitation. J Am Coll Cardiol 57:529–537

    Google Scholar 

  56. Daimon M, Shiota T, Gillinov AM et al (2005) Percutaneous mitral valve repair for chronic ischemic mitral regurgitation: a real-time three-dimensional echocardiographic study in an ovine model. Circulation 111:2183–2189

    Google Scholar 

  57. Kahlert P, Plicht B, Janosi RA et al (2009) The role of imaging in percutaneous mitral valve repair. Herz 34:458–467

    Google Scholar 

  58. Alfieri O, Maisano F, De Bonis M et al (2001) The double-orifice technique in mitral valve repair: a simple solution for complex problems. J Thorac Cardiovasc Surg 122:674–681

    Google Scholar 

  59. Feldman T, Kar S, Rinaldi M et al (2009) Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J Am Coll Cardiol 54:686–694

    Google Scholar 

  60. Silvestry FE, Rodriguez LL, Herrmann HC et al (2007) Echocardiographic guidance and assessment of percutaneous repair for mitral regurgitation with the Evalve MitraClip: lessons learned from EVEREST I. J Am Soc Echocardiogr 20:1131–1140

    Google Scholar 

  61. Cavalcante JL, Rodriguez LL, Kapadia S et al (2012) Role of echocardiography in percutaneous mitral valve interventions. JACC Cardiovasc Imaging 5:733–746

    Google Scholar 

  62. Faletra FF, Pedrazzini G, Pasotti E, Moccetti T (2009) Real-time threedimensional transoesophageal echocardiography showing sequential events of the percutaneous mitral clip procedure. Eur Heart J 30:2225

    Google Scholar 

  63. Altiok E, Becker M, Hamada S et al (2011) Optimized guidance of percutaneous edge-to edge repair of the mitral valve using real-time 3-D transoesphageal echocardiography. Clin Res Cardiol 100:675–681

    Google Scholar 

  64. Biner S, Perk G, Kar S et al (2011) Utility of combined two-dimensional and three-dimensional transesophageal imaging for catheter-based mitral valve clip repair of mitral regurgitation. J Am Soc Echocardiogr 24:611–617

    Google Scholar 

  65. Altiok E, Hamada S, Brehmer K et al (2012) Analysis of procedural effects of percutaneous edge-to-edge mitral valve repair by 2D and 3D echocardiography. Circ Cardiovasc Imaging 5:748–755

    Google Scholar 

  66. O’Gara P, Sugeng L, Lang R et al (2008) The role of imaging in chronic degenerative mitral regurgitation. JACC Cardiovasc Imaging 1:221–1237 67. Lang RM, Tsang W, Weinert L et al (2011) Valvular heart disease. The value of 3-dimensional echocar-diography. J Am Coll Cardiol 58:1933–1944

    Google Scholar 

  67. Faletra FF, Nucifora G, Ho SY (2011) Imaging the atrial septum using real-time three-dimensional transesophageal echo-cardiography: technical tips, normal anatomy, and its role in transseptal puncture. J Am Soc Echocardiogr 24:593–599

    Google Scholar 

  68. Swaans MJ, Post MC, Van den Branden BJ, Van der Heyden JA (2011) A complicated transseptal puncture during Mitraclip procedure: saved by 3D-TEE. Eur J Echocardiogr 12:E45

    Google Scholar 

  69. Swaans MJ, Van den Branden BJ, Van der Heyden JA et al (2009) Threedimensional transoesophageal echocardiography in a patient undergoing percutaneous mitral valve repair using the edge-to-edge clip technique. Eur J Echocardiogr 10:982–983

    Google Scholar 

  70. Ciobanu A, Bennett S, Azam M et al (2011) Incremental value of threedimensional transoesophageal echocardiography for guiding doublepercutaneous MitraClip (R) implantation in a ‘no option’ patient. Eur J Echocardiogr 12:E11

    Google Scholar 

  71. Paranskaya L, Kische S, Bozdag-Turan I et al (2012) Mitral valve with three orifices after percutaneous repair with the MitraClip system: the triple-orifice technique. Clin Res Cardiol 101:847–849

    Google Scholar 

  72. Kische S, Nienaber C, Ince H (2012) Use of four MitraClip devices in a patient with ischemic cardiomyopathy and mitral regurgitation: »zipping by clipping«. Catheter Cardiovasc Interv 80:1007–1013

    Google Scholar 

  73. Faletra F, Grimaldi A, Pasotti E et al (2009) Real-time 3-dimensional transesophageal echocardiography during double percutaneous mitral edge-to-edge procedure. JACC Cardiovasc Imaging 2:1031–1033

    Google Scholar 

  74. Pedrazzini GB, Klimusina J, Pasotti E et al (2011) Complications of percutaneous edge-to-edge mitral valve repair: the role of real-time three-dimensional transesophageal echocardiography. J Am Soc Echocardiogr 24:706–707

    Google Scholar 

  75. Landmesser U, Holmes DR, Jr (2012) Left atrial appendage closure: a percutaneous transcatheter approach for stroke prevention in atrial fibrillation. Eur Heart J 33:698–704

    Google Scholar 

  76. Holmes DR, Reddy VY, Turi ZG et al (2009) Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomised non-inferiority trial. Lancet 374:534–542

    Google Scholar 

  77. Perk G, Biner S, Kronzon I et al (2012) Catheter-based left atrial appendage occlusion procedure: role of echocardiography. Eur Heart J Cardiovasc Imaging 13:132–138

    Google Scholar 

  78. Shah SJ, Bardo DM, Sugeng L et al (2008) Real-time three-dimensional transesophageal echocardiography of the left atrial appendage: initial experience in the clinical setting. J Am Soc Echocardiogr 21:1362–1368

    Google Scholar 

  79. Nakajima H, Seo Y, Ishizu T et al (2010) Analysis of the left atrial appendage by three-dimensional transesophageal echocardiography. Am J Cardiol 106:885–892

    Google Scholar 

  80. Chue CD, de GJ, Steeds RP (2011) The role of echocardiography in percutaneous left atrial appendage occlusion. Eur J Echocardiogr 12:i3–10

    Google Scholar 

  81. Nucifora G, Faletra FF, Regoli F et al (2011) Evaluation of the left atrial ap- pendage with real-time 3-dimensional transesophageal echocardiography: implications for catheter-based left atrial appendage closure. Circ Cardiovasc Imaging 4:514–523

    Google Scholar 

  82. Unsworth B, Sutaria N, Davies DW, Kanagaratnam P (2011) Successful placement of left atrial appendage closure device is heavily dependent on 3-dimensional transesophageal imaging. J Am Coll Cardiol 58:1283

    Google Scholar 

  83. Plicht B, Konorza TF, Kahlert P et al (2013) Risk factors for thrombus formation on the amplatzer cardiac plug after left atrial appendage occlusion. JACC Cardiovasc Interv 6:606–613

    Google Scholar 

  84. Garcia-Fernandez MA, Cortes M, Garcia-Robles JA et al (2010) Utility of real-time three-dimensional transesophageal echocardiography in evaluating the success of percutaneous transcatheter closure of mitral paravalvular leaks. J Am Soc Echocardiogr 23:26–32

    Google Scholar 

  85. Phillips SA, Thompson A, bu-Halimah A et al (2009) Percutaneous closure of aortic pros-thetic paravalvular regurgitation with two amplatzer septal occluders. Anesth Analg 108:437–438

    Google Scholar 

  86. Johri AM, Yared K, Durst R et al (2009) Three-dimensional echocardiography- guided repair of severe paravalvular regurgitation in a bioprosthetic and mechanical mitral valve. Eur J Echocardiogr 10:572–575

    Google Scholar 

  87. Biner S, Kar S, Siegel RJ et al (2010) Value of color Doppler three-dimensional transesophageal echocardi-ography in the percutaneous closure of mitral prosthesis paravalvular leak. Am J Cardiol 105:984–989

    Google Scholar 

  88. Hamilton-Craig C, Boga T, Platts D et al (2009) The role of 3D transesophageal echocardiog-raphy during percutaneous closure of paravalvular mitral regurgitation. JACC Cardiovasc Imaging 2:771–773

    Google Scholar 

  89. Becerra JM, Almeria C, de Isla LP, Zamorano J (2009) Usefulness of 3D transoesophageal echocardiography for guiding wires and closure devices in mitral perivalvular leaks. Eur J Echocardiogr 10:979–981

    Google Scholar 

  90. Kim MS, Casserly IP, Garcia JA et al (2009) Percutaneous transcatheter closure of prosthetic mitral paravalvular leaks: are we there yet? JACC Cardiovasc Interv 2:81–90

    Google Scholar 

  91. Biner S, Rafique AM, Kar S, Siegel RJ (2008) Live three-dimensional transesophageal echocardiography-guided transcatheter closure of a mitral paraprosthetic leak by Amplatzer occluder. J Am Soc Echocardiogr 21:1282–1289

    Google Scholar 

  92. Tarantini G, Mojoli M, Napodano M (2013) Mitral paravalvular leak closure by antegrade percutaneous approach: Three-dimensional transesophageal echocardiographic guided multiple amplatzer implantation by a modified sequential anchoring-based technique. Catheter Cardiovasc Interv 82:e626–629

    Google Scholar 

  93. Hagler DJ, Cabalka AK, Sorajja P et al (2010) Assessment of percutaneous catheter treatment of paravalvular prosthetic regurgitation. JACC Cardiovasc Imaging 3:88–91

    Google Scholar 

  94. Swaans MJ, Post MC, Ten Berg JM (2011) Transapical repair of mitral valve paravalvular leakage using 3-D transesophageal guidance. Catheter Cardiovasc Interv 77:121–123

    Google Scholar 

  95. Rihal CS, Sorajja P, Booker JD et al (2012) Principles of percutaneous paravalvular leak closure. JACC Cardiovasc Interv 5:121–130

    Google Scholar 

  96. Nietlispach F, Johnson M, Moss RR et al (2010) Transcatheter closure of paravalvular defects using a purpose-specific occluder. JACC Cardiovasc Interv 3:759–765

    Google Scholar 

  97. Applebaum RM, Kasliwal RR, Kanojia A et al (1998) Utility of three-dimensional echocardiography during balloon mitral valvuloplasty. J Am Coll Cardiol 32:1405–1409

    Google Scholar 

  98. Binder TM, Rosenhek R, Porenta G et al (2000) Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol 36:1355–1361

    Google Scholar 

  99. Langerveld J, Valocik G, Plokker HW et al (2003) Additional value of three-dimensional transesophageal echocardiography for patients with mitral valve stenosis undergoing balloon valvuloplasty. J Am Soc Echocardiogr 16:841–849

    Google Scholar 

  100. Zamorano J, Perez de Isla L, Sugeng L et al (2004) Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography. Eur Heart J 25:2086–2091

    Google Scholar 

  101. Dobarro D, Gomez-Rubin MC, Lopez-Fernandez T et al (2009) Real time three-dimensional transesophageal echocardiography for guiding percutaneous mitral valvuloplasty. Echocardiography 26:746–748

    Google Scholar 

  102. Rodriguez L, Thomas JD, Monterroso V et al (1993) Validation of the proximal flow convergence method - calculation of orifice area in patients with mitral-stenosis. Circulation 88:1157–1165

    Google Scholar 

  103. Sebag IA, Morgan JG, Handschumacher MD et al (2005) Usefulness of three-dimensionally guided assessment of mitral stenosis using matrixarray ultrasound. Am J Cardiol 96:1151–1156

    Google Scholar 

  104. Knackstedt C, Franke A, Mischke K et al (2006) Semi-automated 3-dimensional intracardiac echocardiography: development and initial clinical experience of a new system to guide ablation procedures. Heart Rhythm 3:1453–1459

    Google Scholar 

  105. Faletra FF, Nucifora G, Regoli F et al (2012) Anatomy of pulmonary veins by real-time 3D TEE: implications for catheter-based pulmonary vein ablation. JACC Cardiovasc Imaging 5:456–462

    Google Scholar 

  106. Pua EC, Idriss SF, Wolf PD, Smith SW (2007) Real-time three-dimensional transesophageal echocardiography for guiding interventional electrophysiology: feasibility study. Ultrason Imaging 29:182–194

    Google Scholar 

  107. Yang HS, Srivathsan K, Wissner E, Chandrasekaran K (2008) Images in cardiovascular medicine. Real-time 3-dimensional transesophageal echo cardiography: novel utility in atrial fibrillation ablation with a prosthetic mitral valve. Circulation 117:e304–e305

    Google Scholar 

  108. Chierchia GB, Van Camp G, Sarkozy A et al (2008) Double transseptal puncture guided by real-time three-dimensional transoesophageal echocardiography during atrial fibrillation ablation. Europace 10:705–706

    Google Scholar 

  109. Chierchia GB, Capulzini L, de Asmundis C et al (2008) First experience with real-time three-dimensional transoesophageal echocardiographyguided transseptal puncture in patients undergoing atrial fibrillation ablation. Europace 10:1325–1328

    Google Scholar 

  110. Lim KK, Sugeng L, Lang R, Knight BP (2008) Double transseptal catheterization guided by real-time 3-dimensional transesophageal echocardiography. Heart Rhythm 5:324–325

    Google Scholar 

  111. Ottaviano L, Chierchia GB, Bregasi A et al (2013) Cryoballoon ablation for atrial fibrillation guided by real-time three-dimensional transoesophageal echocardiography: a feasibility study. Europace 15:944–950

    Google Scholar 

  112. Regoli F, Faletra FF, Scaglione M et al (2012) Pulmonary vein isolation guided by real-time three-dimensional transesophageal echocardiography. Pacing Clin Electrophysiol 35:e76–e79

    Google Scholar 

  113. Faletra FF, Regoli F, Acena M, Auricchio A (2012) Value of real-time transesophageal 3-dimensional echocardiography in guiding ablation of isthmus-dependent atrial flutter and pulmonary vein isolation. Circ J 76:5–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kühl, H., Franke, A., Buck, T. (2015). Monitoring and guiding cardiac interventions and surgery. In: Buck, T., Franke, A., Monaghan, M. (eds) Three-dimensional Echocardiography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36799-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36799-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36798-4

  • Online ISBN: 978-3-642-36799-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics