Skip to main content

Compositional Approximate Markov Chain Aggregation for PEPA Models

  • Conference paper
Computer Performance Engineering (EPEW 2012, UKPEW 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7587))

  • 798 Accesses

Abstract

Approximate Markov chain aggregation involves the construction of a smaller Markov chain that approximates the behaviour of a given chain. We discuss two different approaches to obtain a nearly optimal partition of the state-space, based on different notions of approximate state equivalence.

Both approximate aggregation methods require an explicit representation of the transition matrix, a fact that renders them inefficient for large models. The main objective of this work is to investigate the possibility of compositionally applying such an approximate aggregation technique. We make use of the Kronecker representation of PEPA models, in order to aggregate the state-space of components rather than of the entire model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. Journal of Applied Probability 31(1), 59–75 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bušić, A., Fourneau, J.: Bounds based on lumpable matrices for partially ordered state space. In: ICST Workshop on Tools for Solving Markov Chains. ACM (2006)

    Google Scholar 

  3. Courtois, P.: Decomposability, instabilities, and saturation in multiprogramming systems. Communications of the ACM 18(7), 371–377 (1975)

    Article  MATH  Google Scholar 

  4. Daly, D., Buchholz, P., Sanders, W.H.: Bound-preserving composition for Markov reward models. In: Quantitative Evaluation of Systems, pp. 243–252. IEEE Computer Society (2006)

    Google Scholar 

  5. Dayar, T., Stewart, W.: Quasi lumpability, lower-bounding coupling matrices, and nearly completely decomposable Markov chains. SIAM Journal on Matrix Analysis and Applications 18(2), 482–498 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, K., Sun, Y., Mehta, P., Meyn, S.: An information-theoretic framework to aggregate a Markov chain. In: American Control Conference, pp. 731–736. IEEE Press (2009)

    Google Scholar 

  7. Deuflhard, P., Huisinga, W., Fischer, A., Schütte, C.: Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra and its Applications 315(1-3), 39–59 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fourneau, J., Lecoz, M., Quessette, F.: Algorithms for an irreducible and lumpable strong stochastic bound. Linear Algebra and its Applications 386, 167–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Franceschinis, G., Muntz, R.: Bounds for quasi-lumpable Markov chains. Performance Evaluation 20(1-3), 223–243 (1994)

    Article  Google Scholar 

  10. Franceschinis, G., Muntz, R.: Computing bounds for the performance indices of quasi-lumpable stochastic well-formed nets. IEEE Transactions on Software Engineering 20(7), 516–525 (1994)

    Article  Google Scholar 

  11. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)

    Article  Google Scholar 

  12. Hartfiel, D.: On the structure of stochastic matrices with a subdominant eigenvalue near 1. Linear Algebra and its Applications 272(1-3), 193–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillston, J.: A compositional approach to performance modelling. Cambridge University Press (1996)

    Google Scholar 

  14. Hillston, J.: Fluid flow approximation of PEPA models. In: Quantitative Evaluation of Systems, pp. 33–42. IEEE Computer Society (2005)

    Google Scholar 

  15. Hillston, J., Kloul, L.: An Efficient Kronecker Representation for PEPA Models. In: de Luca, L., Gilmore, S. (eds.) PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Jensen, A.: Markoff chains as an aid in the study of Markoff processes. Skandinavisk Aktuarietidskrift 36, 87–91 (1953)

    Google Scholar 

  17. Kemeny, J., Snell, J.: Finite Markov Chains. Springer (1976)

    Google Scholar 

  18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking for performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review 36(4), 40–45 (2009)

    Article  Google Scholar 

  19. Malik, J., Shi, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  20. Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Review 31(2), 240–272 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 14(1), 849–856 (2001)

    Google Scholar 

  22. Pokarowski, P.: Uncoupling measures and eigenvalues of stochastic matrices. Journal of Applied Analysis 4(2), 259–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Runolfsson, T., Ma, Y.: Model reduction of nonreversible Markov chains. In: IEEE Conference on Decision and Control, pp. 3739–3744. IEEE (2008)

    Google Scholar 

  24. Smith, M.: Compositional abstractions for long-run properties of stochastic systems. In: Quantitative Evaluation of Systems, pp. 223–232. IEEE Computer Society (2011)

    Google Scholar 

  25. Thomas, N., Bradley, J.: Analysis of Non-product Form Parallel Queues Using Markovian Process Algebra. In: Kouvatsos, D.D. (ed.) Next Generation Internet. LNCS, vol. 5233, pp. 331–342. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Milios, D., Gilmore, S. (2013). Compositional Approximate Markov Chain Aggregation for PEPA Models. In: Tribastone, M., Gilmore, S. (eds) Computer Performance Engineering. EPEW UKPEW 2012 2012. Lecture Notes in Computer Science, vol 7587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36781-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36781-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36780-9

  • Online ISBN: 978-3-642-36781-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics