Progress on Partial Edge Drawings

  • Till Bruckdorfer
  • Sabine Cornelsen
  • Carsten Gutwenger
  • Michael Kaufmann
  • Fabrizio Montecchiani
  • Martin Nöllenburg
  • Alexander Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


Recently, a new way of avoiding crossings in straight-line drawings of non-planar graphs has been investigated. The idea of partial edge drawings (PED) is to drop the middle part of edges and rely on the remaining edge parts called stubs. We focus on a symmetric model (SPED) that requires the two stubs of an edge to be of equal length. In this way, the stub at the other endpoint of an edge assures the viewer of the edge’s existence. We also consider an additional homogeneity constraint that forces the stub lengths to be a given fraction δ of the edge lengths (δ-SHPED). Given length and direction of a stub, this model helps to infer the position of the opposite stub.

We show that, for a fixed stub–edge length ratio δ, not all graphs have a δ-SHPED. Specifically, we show that K 241 does not have a 1/4-SHPED, while bandwidth-k graphs always have a \(\Theta(1/\sqrt{k})\)-SHPED. We also give bounds for complete bipartite graphs. Further, we consider the problem MaxSPED where the task is to compute the SPED of maximum total stub length that a given straight-line drawing contains. We present an efficient solution for 2-planar drawings and a 2-approximation algorithm for the dual problem.


Complete Bipartite Graph Geometric Graph Graph Drawing Edge Segment Edge Crossing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two variables per constraint. Algorithmica 29, 595–609 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Visual. Comput. Graphics 1(1), 16–28 (1995)CrossRefGoogle Scholar
  3. 3.
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. 28(9), 643–647 (1979)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F., Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. Arxiv, (2012)Google Scholar
  5. 5.
    Bruckdorfer, T., Kaufmann, M.: Mad at Edge Crossings? Break the Edges! In: Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–50. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Burch, M., Vehlow, C., Konevtsova, N., Weiskopf, D.: Evaluating Partially Drawn Links for Directed Graph Edges. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 226–237. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Eppstein, D., van Kreveld, M., Mumford, E., Speckmann, B.: Edges and switches, tunnels and bridges. Comput. Geom. Theory Appl. 42(8), 790–802 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Mathematica 2, 463–470 (1935)MathSciNetGoogle Scholar
  10. 10.
    Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge bundling for visualizing large graphs. In: 4th IEEE Pacific Visual. Symp. (PacificVis 2011), pp. 187–194. IEEE Press, New York (2011)CrossRefGoogle Scholar
  11. 11.
    Håstad, J.: Clique is hard to approximate within n 1 − ε. Acta Math. 182, 105–142 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graphics Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  13. 13.
    Kindermann, P., Spoerhase, J.: Private Communication (March 2012)Google Scholar
  14. 14.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combin. 17, 427–439 (1997)zbMATHCrossRefGoogle Scholar
  15. 15.
    Peng, D., Lu, N., Chen, W., Peng, Q.: SideKnot: Revealing relation patterns for graph visualization. In: 5th IEEE Pacific Visual. Symp. (PacificVis 2012), pp. 65–72. IEEE Press, New York (2012)CrossRefGoogle Scholar
  16. 16.
    Porschen, S., Speckenmeyer, E.: Algorithms for Variable-Weighted 2-SAT and Dual Problems. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 173–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Rusu, A., Fabian, A.J., Jianu, R., Rusu, A.: Using the gestalt principle of closure to alleviate the edge crossing problem in graph drawings. In: 15th Int. Conf. Inform. Visual. (IV 2011), pp. 488–493. IEEE Press, New York (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Till Bruckdorfer
    • 1
  • Sabine Cornelsen
    • 2
  • Carsten Gutwenger
    • 3
  • Michael Kaufmann
    • 1
  • Fabrizio Montecchiani
    • 4
  • Martin Nöllenburg
    • 5
  • Alexander Wolff
    • 6
  1. 1.Universität TübingenGermany
  2. 2.Universität KonstanzGermany
  3. 3.Universität DortmundGermany
  4. 4.Università degli Studi di PerugiaItaly
  5. 5.Institut für Theoretische InformatikKITGermany
  6. 6.Lehrstuhl für Informatik IUniversität WürzburgGermany

Personalised recommendations