Time-Space Maps from Triangulations

  • Sandra Bies
  • Marc van Kreveld
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


Time-space maps show travel time as distances on a map. We discuss the case of time-space maps with a single center; here the travel times from a single source location to a number of destinations are shown by their distances. To accomplish this while maintaining recognizability, the input map must be deformed in a suitable manner. We present three different methods and analyze them experimentally.


Travel Time Delaunay Triangulation Angle Deformation Planar Point Location Delaunay Trian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahmed, N., Miller, H.: Time-space transformations of geographic space for exploring, analyzing and visualizing transportation systems. J. of Transport Geography 15, 2–17 (2007)CrossRefGoogle Scholar
  2. 2.
    Albers, G., Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points. Int. J. Comput. Geometry Appl. 8(3), 365–380 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aronov, B., Seidel, R., Souvaine, D.L.: On compatible triangulations of simple polygons. Comput. Geom. 3, 27–35 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    de Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear cartograms. Int. J. Comput. Geometry Appl. 20(2), 203–222 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dorling, D.: Area Cartograms: their Use and Creation. Concepts and Techniques in Modern Geography, vol. 59. Environmental Publications, Norwich (1996)Google Scholar
  7. 7.
    Dougenik, J., Chrisman, N., Niemeyer, D.: An algorithm to construct continuous area cartograms. Prof. Geographer 37, 75–81 (1985)CrossRefGoogle Scholar
  8. 8.
    Kaiser, C., Walsh, F., Farmer, C.J.Q., Pozdnoukhov, A.: User-Centric Time-Distance Representation of Road Networks. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 85–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Keim, D., North, S., Panse, C.: CartoDraw: A fast algorithm for generating contiguous cartograms. IEEE Trans. Visu. and Comp. Graphics 10, 95–110 (2004)CrossRefGoogle Scholar
  10. 10.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom. 37(3), 175–187 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Nöllenburg, M., Wolff, A.: A Mixed-Integer Program for Drawing High-Quality Metro Maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Olson, J.: Noncontiguous area cartograms. Prof. Geographer 28, 371–380 (1976)CrossRefGoogle Scholar
  13. 13.
    Saalfeld, A.: Joint triangulations and triangulation maps. In: Proc. 3rd ACM Symposium on Computational Geometry, pp. 195–204 (1987)Google Scholar
  14. 14.
    Shimizu, E., Inoue, R.: A new algorithm for distance cartogram construction. International Journal of Geographical Information Science 23(11), 1453–1470 (2009)CrossRefGoogle Scholar
  15. 15.
    Tobler, W.: Thirty-five years of computer cartograms. Annals of the Assoc. American Cartographers 94(1), 58–71 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sandra Bies
    • 1
  • Marc van Kreveld
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityThe Netherlands

Personalised recommendations