Clustering, Visualizing, and Navigating for Large Dynamic Graphs

  • Arnaud Sallaberry
  • Chris Muelder
  • Kwan-Liu Ma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


In this paper, we present a new approach to exploring dynamic graphs. We have developed a new clustering algorithm for dynamic graphs which finds an ideal clustering for each time-step and links the clusters together. The resulting time-varying clusters are then used to define two visual representations. The first view is an overview that shows how clusters evolve over time and provides an interface to find and select interesting time-steps. The second view consists of a node link diagram of a selected time-step which uses the clustering to efficiently define the layout. By using the time-dependant clustering, we ensure the stability of our visualization and preserve user mental map by minimizing node motion, while simultaneously producing an ideal layout for each time step. Also, as the clustering is computed ahead of time, the second view updates in linear time which allows for interactivity even for graphs with upwards of tens of thousands of nodes.


Graph Cluster Cluster Versus Dynamic Graph Graph Layout Large Scale Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: A large scale graph visualization system. IEEE TVCG 12(5), 669–676 (2006)Google Scholar
  2. 2.
    Archambault, D., Munzner, T., Auber, D.: GrouseFlocks: Steerable exploration of graph hierarchy space. IEEE TVCG 14(4), 900–913 (2008)Google Scholar
  3. 3.
    Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE TVCG 17(4), 539–552 (2011)Google Scholar
  4. 4.
    Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment (2008)Google Scholar
  5. 5.
    Boitmanis, K., Brandes, U., Pich, C.: Visualizing Internet Evolution on the Autonomous Systems Level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing modularity is hard (2006),
  7. 7.
    Brandes, U., Mader, M.: A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for scalable dynamic graph visualization. IEEE TVCG 17(12), 2344–2353 (2011)Google Scholar
  9. 9.
    Diehl, S., Görg, C.: Graphs, They are Changing: Dynamic Graph Drawing for a Sequence of Graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph Animations with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE TVCG 14(4), 727–740 (2008)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  13. 13.
    Görg, C., Birke, P., Pohl, M., Diehl, S.: Dynamic Graph Drawing of Sequences of Orthogonal and Hierarchical Graphs. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 228–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hachul, S., Jünger, M.: An Experimental Comparison of Fast Algorithms for Drawing General Large Graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 235–250. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    van Ham, F., van Wijk, J.J.: Interactive visualization of small world graphs. In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2004), pp. 199–206 (2004)Google Scholar
  16. 16.
    Haverkort, H.J., van Walderveen, F.: Locality and bounding-box quality of two-dimensional space-filling curves. Computational Geometry, Theory and Applications 43(2), 131–147 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE TVCG 12(5), 741–748 (2006)Google Scholar
  18. 18.
    Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for dynamic maps. In: Proceedings of the 5th IEEE Pacific Visualization Symposium (PacificVis 2012), pp. 33–40 (2012)Google Scholar
  19. 19.
    Koren, Y., Harel, D.: A Multi-scale Algorithm for the Linear Arrangement Problem. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 296–309. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs. IEEE TVCG 12(5), 805–812 (2006)Google Scholar
  21. 21.
    Muelder, C., Ma, K.L.: Rapid graph layout using space filling curves. IEEE TVCG 14(6), 1301–1308 (2008)Google Scholar
  22. 22.
    Newman, M.E.J., Girvan, M.: Graph clustering. Physical Review E 69(026113) (2004)Google Scholar
  23. 23.
    Noack, A.: Modularity clustering is force-directed layout. CoRR abs/0807.4052 (2008)Google Scholar
  24. 24.
    North, S.C.: Incremental Layout in DynaDAG. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  25. 25.
    Ogawa, M., Ma, K.L.: Software evolution storylines. In: Proceedings of the ACM 2010 Symposium on Software Visualization (SoftVis 2010), pp. 35–42 (2010)Google Scholar
  26. 26.
    Petit, J.: Experiments on the minimum linear arrangement problem. Tech. Rep. LSI-01-7-R, Universitat Politecnica de Catalunya, Departament de Llenguatges i Sistemes Informatics (2001)Google Scholar
  27. 27.
    Purchase, H.C., Hoggan, E., Görg, C.: How Important Is the “Mental Map”? – An Empirical Investigation of a Dynamic Graph Layout Algorithm. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Purchase, H.C., Samra, A.: Extremes Are Better: Investigating Mental Map Preservation in Dynamic Graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Saffrey, P., Purchase, H.: The ”mental map” versus ”static aesthetic” compromise in dynamic graphs: A user study. In: Proceedings of the 9th Australasian User Interface Conference (AUIC 2008), pp. 85–93 (2008)Google Scholar
  30. 30.
    Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualizations. To appear in IEEE TVCG (2012)Google Scholar
  32. 32.
    Tufte, E.R.: Envisionning Information. Graphics Press (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arnaud Sallaberry
    • 1
  • Chris Muelder
    • 1
  • Kwan-Liu Ma
    • 1
  1. 1.University of California at DavisU.S.A.

Personalised recommendations