Mental Map Preservation Helps User Orientation in Dynamic Graphs

  • Daniel Archambault
  • Helen C. Purchase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


We present the results of a formal experiment that tests the ability of a participant to orient themselves in a dynamically evolving graph. Examples of these tasks include finding a specific location or route between two locations. We find that preserving the mental map for the tasks tested is significantly faster and produces fewer errors. As the number of targets increase, this result holds.


Error Rate Target Level User Orientation Dynamic Graph Graph Layout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Archambault, D., Purchase, H.C.: The mental map and memorability in dynamic graphs. In: Proc. of the IEEE Pacific Visualization Symposium (PacificVis 2012), pp. 89–96 (2012)Google Scholar
  2. 2.
    Archambault, D., Purchase, H.C., Pinaud, B.: Difference Map Readability for Dynamic Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 50–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans. on Visualization and Computer Graphics 17(4), 539–552 (2011)CrossRefGoogle Scholar
  4. 4.
    Auber, D.: Tulip: A huge graph visualization framework. In: Mutzel, P., Jünger, M. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 105–126. Springer (2003)Google Scholar
  5. 5.
    Bederson, B.B., Boltman, A.: Does animation help users build mental maps of spatial information? In: Proc. of the 1999 IEEE Symposium on Information Visualization, pp. 28–35 (1999)Google Scholar
  6. 6.
    Brandes, U., Indlekofer, N., Mader, M.: Visualization methods for longitudinal social networks and stochastic actor-oriented modeling. Social Networks 34(3), 291–308 (2011)CrossRefGoogle Scholar
  7. 7.
    Brandes, U., Mader, M.: A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Coleman, M.K., Parker, D.S.: Aesthetics-based graph layout for human consumption. Software - Practice and Experience 26(12), 1415–1438 (1996)CrossRefGoogle Scholar
  9. 9.
    Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a diagram. In: Proc. of Compugraphics, pp. 24–33 (1991)Google Scholar
  10. 10.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph Animations with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Farrugia, M., Quigley, A.: Effective temporal graph layout: A comparative study of animation versus static display methods. Journal of Information Visualization 10(1), 47–64 (2011)Google Scholar
  12. 12.
    Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. on Visualization and Computer Graphics 14(4), 727–740 (2008)CrossRefGoogle Scholar
  13. 13.
    Ghani, S., Elmqvist, N.: Improving revisitation in graphs through static spatial features. In: Proc. of Graphics Interface (GI 2011), pp. 175–182 (2011)Google Scholar
  14. 14.
    Ghani, S., Elmqvist, N., Yi, J.S.: Perception of animated node-link diagrams for dynamic graphs. In: Computer Graphics Forum (Proc. EuroVis 2012), vol. 31, pp. 1205–1214 (2012)Google Scholar
  15. 15.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics–Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  16. 16.
    Liu, G., Austen, E.L., Booth, K.S., Fisher, B.D., Argue, R., Rempel, M.I., Enns, J.T.: Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception and Performance 31(2), 235–247 (2005)CrossRefGoogle Scholar
  17. 17.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of Visual Languages and Computing 6, 183–210 (1995)CrossRefGoogle Scholar
  18. 18.
    Purchase, H.C., Samra, A.: Extremes Are Better: Investigating Mental Map Preservation in Dynamic Graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Pylyshyn, Z.W., Storm, R.W.: Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3(3), 179–197 (1988)CrossRefGoogle Scholar
  20. 20.
    Saffrey, P., Purchase, H.C.: The “mental map” versus “static aesthetic” compromise in dynamic graphs: A user study. In: Proc. of the 9th Australasian User Interface Conference, pp. 85–93 (2008)Google Scholar
  21. 21.
    Skopik, A., Gutwin, C.: Improving revisitation in fisheye views with visit wear. In: Proc. of SIGCHI Conference on Human Factors in Computing Systems (CHI 2005), pp. 771–780 (2005)Google Scholar
  22. 22.
    Tufte, E.: Envisioning Information. Graphics Press (1990)Google Scholar
  23. 23.
    Yantis, S.: Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology 24, 295–340 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Daniel Archambault
    • 1
  • Helen C. Purchase
    • 2
  1. 1.Clique Strategic Research ClusterUniversity College DublinIreland
  2. 2.School of Computing ScienceUniversity of GlasgowUK

Personalised recommendations