On the Usability of Lombardi Graph Drawings

  • Helen C. Purchase
  • John Hamer
  • Martin Nöllenburg
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


A recent line of work in graph drawing studies Lombardi drawings, i.e., drawings with circular-arc edges and perfect angular resolution at vertices. Little is known about the effects of curved edges versus straight edges in typical graph reading tasks. In this paper we present the first user evaluation that empirically measures the readability of three different layout algorithms (traditional spring embedder and two recent near-Lombardi force-based algorithms) for three different tasks (shortest path, common neighbor, vertex degree). The results indicate that, while users prefer the Lombardi drawings, the performance data do not present such a positive picture.


Planar Graph Angular Resolution Common Neighbor Straight Edge Curve Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)Google Scholar
  2. 2.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi drawings of graphs. J. Graph Alg. and Applications 16(1), 85–108 (2012)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bar, M., Neta, M.: Humans prefer curved visual objects. Psychological Science 17(8), 645–648 (2006)CrossRefGoogle Scholar
  4. 4.
    Purchase, H.: Which Aesthetic Has the Greatest Effect on Human Understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3), 349–359 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Garg, A., Tamassia, R.: Planar Drawings and Angular Resolution: Algorithms and Bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Gutwenger, C., Mutzel, P.: Planar Polyline Drawings with Good Angular Resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Cheng, C., Duncan., C., Goodrich, M., Kobourov, S.: Drawing planar graphs with circular arcs. Discrete Comput. Geom. 25(3), 405–418 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Brandes, U., Schlieper, B.: Angle and Distance Constraints on Tree Drawings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 54–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gutwenger, C., Mutzel, P.: Planar Polyline Drawings with Good Angular Resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Brandes, U., Shubina, G., Tamassia, R.: Improving angular resolution in visualizations of geographic networks. In: Proc. 2nd TCVG Symp. Visualization (VisSym 2000), Springer, 23–32 (2000)Google Scholar
  13. 13.
    Duncan, C., Eppstein, D., Goodrich, M., Kobourov, S., Nöllenburg, M.: Drawing Trees with Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and poly-arc lombardi drawings. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 308–319. Springer, Heidelberg (2011)Google Scholar
  15. 15.
    Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks. In: Proc. 3rd Int. Conf. Weblogs and Social Media, pp. 361–362 (2009)Google Scholar
  16. 16.
    Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-Directed Lombardi-Style Graph Drawing. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  18. 18.
    Ware, C.: Info. Visualization: Perception for Design. Morgan Kaufmann (2004)Google Scholar
  19. 19.
    Xu, K., Rooney, C., Passmore, P., Ham, D.H., Nguyen, P.: A user study on curved edges in graph visualization. In: IEEE InfoVis (2012) (to appear)Google Scholar
  20. 20.
    Nakarada-Kordic, I., Lobb, B.: Effect of perceived attractiveness of web interface design on visual search of web sites. In: Proc. 6th SIGCHI NZ Conf. Computer-Human Interaction (CHINZ 2005), pp. 25–27. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Helen C. Purchase
    • 1
  • John Hamer
    • 1
  • Martin Nöllenburg
    • 2
  • Stephen G. Kobourov
    • 3
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUK
  2. 2.Faculty of InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Department of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations