Visualizing Streaming Text Data with Dynamic Graphs and Maps

  • Emden R. Gansner
  • Yifan Hu
  • Stephen North
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


The many endless rivers of text now available present a serious challenge in the task of gleaning, analyzing and discovering useful information. In this paper, we describe a methodology for visualizing text streams in real-time modeled as a dynamic graph and its derived map. The approach automatically groups similar messages into “countries,” with keyword summaries, using semantic analysis, graph clustering and map generation techniques. It handles the need for visual stability across time by dynamic graph layout and Procrustes projection techniques, enhanced with a novel stable component packing algorithm. The result provides a continuous, succinct view of evolving topics of interest. To make these ideas concrete, we describe their application to an online service called TwitterScope.


Delaunay Triangulation Latent Dirichlet Allocation Dynamic Graph Visual Stability Proximity Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alsakran, J., Chen, Y., Luo, D., Zhao, Y., Yang, J., Dou, W., Liu, S.: Real-time visualization of streaming text with a force-based dynamic system. IEEE Computer Graphics and Applications 32(1), 34–45 (2012)CrossRefGoogle Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the analysis of dynamic discourse. In: IEEE INFOVIS 2002, pp. 145–151 (2002)Google Scholar
  4. 4.
    Brandes, U., Mader, M.: A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing. In: van Kreveld, M.J., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Brandes, U., Wagner, D.: A Bayesian Paradigm for Dynamic Graph Layout. In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall/CRC (2000)Google Scholar
  7. 7.
    Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., Tong, X.: Textflow: Towards better understanding of evolving topics in text. IEEE Trans. Vis. Comput. Graph. 17(12), 2412–2421 (2011)CrossRefGoogle Scholar
  8. 8.
    Diehl, S., Görg, C.: Graphs, They Are Changing – Dynamic Graph Drawing for a Sequence of Graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–31. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dwyer, T., Marriott, K., Stuckey, P.J.: Fast Node Overlap Removal. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL: Graph Animations with Evolving Layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 98–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Fabrikant, S.I., Montello, D.R., Mark, D.M.: The distance-similarity metaphor in region-display spatializations. IEEE Computer Graphics & Application 26, 34–44 (2006)CrossRefGoogle Scholar
  12. 12.
    Freivalds, K., Dogrusoz, U., Kikusts, P.: Disconnected Graph Layout and the Polyomino Packing Approach. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 378–391. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Gansner, E.R., Hu, Y.: Efficient Node Overlap Removal Using a Proximity Stress Model. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 206–217. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Gansner, E.R., Hu, Y., North, S.C.: Visualizing streaming text data with dynamic graphs and maps (2012),
  15. 15.
    Gansner, E.R., Hu, Y.F., Kobourov, S.G.: Gmap: Visualizing graphs and clusters as maps. In: Proceedings of IEEE Pacific Visualization Symposium, pp. 201–208 (2010)Google Scholar
  16. 16.
    Gansner, E.R., North, S.: An open graph visualization system and its applications to software engineering. Software - Practice & Experience 30, 1203–1233 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gansner, E.R., North, S.C.: Improved Force-Directed Layouts. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 364–373. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Goehlsdorf, D., Kaufmann, M., Siebenhaller, M.: Placing connected components of disconnected graphs. In: Hong, S.H., Ma, K.L. (eds.) APVIS: 6th International Asia-Pacific Symposium on Visualization 2007, pp. 101–108. IEEE (2007)Google Scholar
  19. 19.
    Gretarsson, B., O’Donovan, J., Bostandjiev, S., Höllerer, T., Asuncion, A.U., Newman, D., Smyth, P.: Topicnets: Visual analysis of large text corpora with topic modeling. ACM TIST 3(2), 23 (2012)Google Scholar
  20. 20.
    Herman, Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  21. 21.
    Hu, Y., Kobourov, S., Veeramoni, S.: Embedding, clustering and coloring for dynamic maps. In: Proceedings of IEEE Pacific Visualization Symposium (2012)Google Scholar
  22. 22.
    Jin, O., Liu, N.N., Zhao, K., Yu, Y., Yang, Q.: Transferring topical knowledge from auxiliary long texts for short text clustering. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 775–784. ACM, New York (2011)Google Scholar
  23. 23.
    Marcus, A., Bernstein, M.S., Badar, O., Karger, D.R., Madden, S., Miller, R.C.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Tan, D.S., Amershi, S., Begole, B., Kellogg, W.A., Tungare, M. (eds.) CHI, pp. 227–236. ACM (2011)Google Scholar
  24. 24.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)CrossRefGoogle Scholar
  25. 25.
    Sibson, R.: Studies in the robustness of multidimensional scaling: Procrustes statistics. Journal of the Royal Statistical Society, Series B (Methodological) 40, 234–238 (1978)zbMATHGoogle Scholar
  26. 26.
    Šilić, A., Bašić, B.D.: Visualization of Text Streams: A Survey. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part II. LNCS, vol. 6277, pp. 31–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emden R. Gansner
    • 1
  • Yifan Hu
    • 1
  • Stephen North
    • 1
  1. 1.AT&T Labs - ResearchFlorham ParkUSA

Personalised recommendations