Force-Directed Graph Drawing Using Social Gravity and Scaling

  • Michael J. Bannister
  • David Eppstein
  • Michael T. Goodrich
  • Lowell Trott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


Force-directed layout algorithms produce graph drawings by resolving a system of emulated physical forces. We present techniques for using social gravity as an additional force in force-directed layouts, together with a scaling technique, to produce drawings of trees and forests, as well as more complex social networks. Social gravity assigns mass to vertices in proportion to their network centrality, which allows vertices that are more graph-theoretically central to be visualized in physically central locations. Scaling varies the gravitational force throughout the simulation, and reduces crossings relative to unscaled gravity. In addition to providing this algorithmic framework, we apply our algorithms to social networks produced by Mark Lombardi, and we show how social gravity can be incorporated into force-directed Lombardi-style drawings.


Social Network Gravitational Force Degree Centrality Betweenness Centrality Closeness Centrality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network Analysis in the Social Sciences. Science 323(5916), 892–895 (2009), CrossRefGoogle Scholar
  2. 2.
    Brandenburg, F.J., Himsolt, M., Rohrer, C.: An Experimental Comparison of Force-Directed and Randomized Graph Drawing Algorithms. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996), CrossRefGoogle Scholar
  3. 3.
    Brandes, U.: A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology 25(2), 163–177 (2001), zbMATHCrossRefGoogle Scholar
  4. 4.
    Brandes, U.: Drawing on Physical Analogies. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 71–86. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Brandes, U., Freeman, L.C., Wagner, D.: Social networks. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 26-1–26-32. Chapman & Hall/CRC (2013)Google Scholar
  6. 6.
    Brandes, U., Kenis, P., Raab, J.: Explanation Through Network Visualization. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences 2(1), 16–23 (2006), CrossRefGoogle Scholar
  7. 7.
    Brandes, U., Pich, C.: More Flexible Radial Layout. Journal of Graph Algorithms and Applications 15(1), 157–173 (2011), MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.: Force-Directed Lombardi-Style Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2012), CrossRefGoogle Scholar
  9. 9.
    Correa, C., Crnovrsanin, T., Ma, K.L.: Visual reasoning about social networks using centrality sensitivity. IEEE Trans. on Visualization and Computer Graphics 18(1), 106–120 (2012), CrossRefGoogle Scholar
  10. 10.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River (1998)Google Scholar
  11. 11.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Löffler, M.: Planar and Poly-arc Lombardi Drawings. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 308–319. Springer, Heidelberg (2012), CrossRefGoogle Scholar
  12. 12.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing Trees with Perfect Angular Resolution and Polynomial Area. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 183–194. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi Drawings of Graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 195–207. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and worms. In: 6th Int. Conf. on Information Visualisation, pp. 147–152 (2002),
  15. 15.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979), CrossRefGoogle Scholar
  16. 16.
    Frick, A., Ludwig, A., Mehldau, H.: A Fast Adaptive Layout Algorithm for Undirected Graphs (Extended Abstract and System Demonstration). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129–1164 (1991), CrossRefGoogle Scholar
  18. 18.
    Furht, B.: Handbook of Social Network Technologies and Applications. Springer (2010)Google Scholar
  19. 19.
    Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. Comp 29(1), 3–18 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gajer, P., Kobourov, S.G.: GRIP: Graph dRawing with Intelligent Placement. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Hu, Y.F.: Efficient and high quality force-directed graph drawing. The Mathematica Journal 10(1), 37–71 (2005)Google Scholar
  22. 22.
    Lombardi, M., Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)Google Scholar
  23. 23.
    Sander, G.: Graph layout for applications in compiler construction. Theoretical Computer Science 217(2), 175–214 (1999), zbMATHCrossRefGoogle Scholar
  24. 24.
    Stephenson, K., Zelen, M.: Rethinking centrality: Methods and examples. Social Networks 11(1), 1–37 (1989), MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael J. Bannister
    • 1
  • David Eppstein
    • 1
  • Michael T. Goodrich
    • 1
  • Lowell Trott
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations