Planar Preprocessing for Spring Embedders

  • J. Joseph Fowler
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


Spring embedders are conceptually simple and produce straight-line drawings with an undeniable aesthetic appeal, which explains their prevalence when it comes to automated graph drawing. However, when drawing planar graphs, spring embedders often produce non-plane drawings, as edge crossings do not factor into the objective function being minimized. On the other hand, there are fairly straight-forward algorithms for creating plane straight-line drawings for planar graphs, but the resulting layouts generally are not aesthetically pleasing, as vertices are often grouped in small regions and edges lengths can vary dramatically. It is known that the initial layout influences the output of a spring embedder, and yet a random layout is nearly always the default. We study the effect of using various plane initial drawings as an inputs to a spring embedder, measuring the percent improvement in reducing crossings and in increasing node separation, edge length uniformity, and angular resolution.


Planar Graph Edge Length Angular Resolution Graph Drawing Edge Crossing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertault, F.: A force-directed algorithm that preserves edge-crossing properties. Information Processing Letters 74(1-2), 7–13 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brandenburg, F.J., Himsolt, M., Rohrer, C.: An Experimental Comparison of Force-Directed and Randomized Graph Drawing Algorithms. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Brandes, U., Pich, C.: More Flexible Radial Layout. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 107–118. Springer, Heidelberg (2010), CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Pich, C.: An Experimental Study on Distance-Based Graph Drawing (Extended Abstract). In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: The open graph drawing framework. In: Handbook of Graph Drawing and VisualizationGoogle Scholar
  6. 6.
    Didimo, W., Liotta, G., Romeo, S.A.: Topology-Driven Force-Directed Algorithms. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 165–176. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Dwyer, T., Marriott, K., Wybrow, M.: Topology Preserving Constrained Graph Layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Eades, P.: A heuristic for graph drawing. Cong. Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  9. 9.
    Fowler, J., Kobourov, S.G.: Planar preprocessing for spring embedders. Technical Report TR12-03, Dept. of Computer Science, Univ. of Arizona (2012)Google Scholar
  10. 10.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software – Practice and Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  12. 12.
    Fusy, É.: Uniform random sampling of planar graphs in linear time. Random Structures and Algorithms 35(4), 464–522 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    van Ham, F., Wattenberg, M.: Centrality based visualization of small world graphs. Comput. Graph. Forum 27(3), 975–982 (2008)CrossRefGoogle Scholar
  14. 14.
    Harel, D., Sardas, M.: Randomized graph drawing with heavy-duty preprocessing. Journal of Visual Languages and Computing 6(3), 233–253 (1995)CrossRefGoogle Scholar
  15. 15.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7–15 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik und Physik, pp. 142–144 (1918)Google Scholar
  18. 18.
    Purchase, H.: Metrics for graph drawing aesthetics. Journal of Visual Languages & Computing 13(5), 501–516 (2002)CrossRefGoogle Scholar
  19. 19.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 138–148 (1990)Google Scholar
  20. 20.
    Tunkelang, D.: JIGGLE: Java Interactive Graph Layout Environment. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 413–422. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Joseph Fowler
    • 1
  • Stephen G. Kobourov
    • 1
  1. 1.Department of Computer ScienceUniversity of ArizonaUSA

Personalised recommendations