On the Density of Maximal 1-Planar Graphs

  • Franz J. Brandenburg
  • David Eppstein
  • Andreas Gleißner
  • Michael T. Goodrich
  • Kathrin Hanauer
  • Josef Reislhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. It is maximal 1-planar if the addition of any edge violates 1-planarity.

Maximal 1-planar graphs have at most 4n − 8 edges. We show that there are sparse maximal 1-planar graphs with only \(\frac{45}{17} n + \mathcal{O}(1)\) edges. With a fixed rotation system there are maximal 1-planar graphs with only \(\frac{7}{3} n + \mathcal{O}(1)\) edges. This is sparser than maximal planar graphs. There cannot be maximal 1-planar graphs with less than \(\frac{21}{10} n - \mathcal{O}(1)\) edges and less than \(\frac{28}{13} n - \mathcal{O}(1)\) edges with a fixed rotation system. Furthermore, we prove that a maximal 1-planar rotation system of a graph uniquely determines its 1-planar embedding.


Span Tree Rotation System Edge Incident Graph Draw Edge Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: On 1-Planar Graphs with Rotation Systems. Tech. Rep. MIP-1207, Fakultät für Informatik und Mathematik, Universität Passau (2012)Google Scholar
  2. 2.
    Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 53, 41–52 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale Graphen. Mathematische Nachrichten 117, 323–339 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Borodin, O.V.: A New Proof of the 6 Color Theorem. Journal of Graph Theory 19(4), 507–521 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)Google Scholar
  7. 7.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s Theorem for 1-Planar Graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Eades, P., Liotta, G.: Right Angle Crossing Graphs and 1-Planarity. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 148–153. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Fabrici, I., Madaras, T.: The Structure of 1-Planar Graphs. Discrete Mathematics 307(7-8), 854–865 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Goodrich, M.T., Wagner, C.G.: A Framework for Drawing Planar Graphs with Curves and Polylines. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 153–166. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  12. 12.
    Korzhik, V.P., Mohar, B.: Minimal Obstructions for 1-Immersions and Hardness of 1-Planarity Testing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 302–312. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Korzhik, V.P.: Minimal Non-1-Planar Graphs. Discrete Math. 308(7), 1319–1327 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mehlhorn, K., Mutzel, P.: On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm. Algorithmica 16, 233–242 (1995)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nishizeki, T., Rahman, S.: Planar Graph Drawing. World Scientific (2004)Google Scholar
  16. 16.
    Pach, J., Tóth, G.: Graphs Drawn with Few Crossings per Edge. Combinatorica 17, 427–439 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 29, 107–117 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Schnyder, W.: Embedding Planar Graphs on the Grid. In: Proc. SODA, pp. 138–148 (1990)Google Scholar
  19. 19.
    Schumacher, H.: Zur Struktur 1-planarer Graphen. Mathematische Nachrichten 125, 291–300 (1986)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Suzuki, Y.: Optimal 1-planar Graphs which Triangulate other Surfaces. Discrete Mathematics 310(1), 6–11 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Suzuki, Y.: Re-embeddings of Maximum 1-Planar Graphs. SIAM J. Discrete Math. 24(4), 1527–1540 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Franz J. Brandenburg
    • 1
  • David Eppstein
    • 2
  • Andreas Gleißner
    • 1
  • Michael T. Goodrich
    • 2
  • Kathrin Hanauer
    • 1
  • Josef Reislhuber
    • 1
  1. 1.University of PassauPassauGermany
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations