Point-Set Embeddability of 2-Colored Trees

  • Fabrizio Frati
  • Marc Glisse
  • William J. Lenhart
  • Giuseppe Liotta
  • Tamara Mchedlidze
  • Rahnuma Islam Nishat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


In this paper we study bichromatic point-set embeddings of 2-colored trees on 2-colored point sets, i.e., point-set embeddings of trees (whose vertices are colored red and blue) on point sets (whose points are colored red and blue) such that each red (blue) vertex is mapped to a red (resp. blue) point. We prove that deciding whether a given 2-colored tree admits a bichromatic point-set embedding on a given convex point set is an \(\cal NP\)-complete problem; we also show that the same problem is linear-time solvable if the convex point set does not contain two consecutive points with the same color. Furthermore, we prove a 3n/2 − O(1) lower bound and a 2n upper bound (a 7n/6 − O(logn) lower bound and a 4n/3 upper bound) on the minimum size of a universal point set for straight-line bichromatic embeddings of 2-colored trees (resp. 2-colored binary trees). Finally, we show that universal convex point sets with n points exist for 1-bend bichromatic point-set embeddings of 2-colored trees.


Planar Graph Blue Point Consecutive Point Outerplanar Graph Proof Sketch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abellanas, M., Garcia-Lopez, J., Hernández-Peñalver, G., Noy, M., Ramos, P.A.: Bipartite embeddings of trees in the plane. Discr. Appl. Math. 93(2-3), 141–148 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theor. Comp. Sci. 408(2-3), 129–142 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs. In: SoCG 2012 (2012) (to appear)Google Scholar
  4. 4.
    Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S.G., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. Computat. Geom. Th. Appl. 43, 219–232 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. Th. Appl. 23(3), 303–312 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. J. Graph Alg. Appl. 1(2), 1–15 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brandes, U., Erten, C., Estrella-Balderrama, A., Fowler, J.J., Frati, F., Geyer, M., Gutwenger, C., Hong, S., Kaufmann, M., Kobourov, S.G., Liotta, G., Mutzel, P., Symvonis, A.: Colored simultaneous geometric embeddings and universal pointsets. Algorithmica 60(3), 569–592 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs. SIGACT News 20, 83–86 (1989)CrossRefGoogle Scholar
  10. 10.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored point-set embeddability of outerplanar graphs. J. Graph Alg. Appl. 12(1), 29–49 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Wismath, S.K.: Point-set embeddings of trees with given partial drawings. Comput. Geom. 42(6-7), 664–676 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.: Curve-constrained drawings of planar graphs. Comput. Geom. Theory Appl. 30, 1–23 (2005)zbMATHCrossRefGoogle Scholar
  14. 14.
    Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. Int. J. of Found. Comp. Sci. 17(5), 1071–1094 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained vertex positions and few bends per edge. Algorithmica 57, 796–818 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dujmovic, V., Evans, W., Lazard, S., Lenhart, W., Liotta, G., Rappaport, D., Wismath, S.: On Point-Sets That Support Planar Graphs. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 64–74. Springer, Heidelberg (2012)Google Scholar
  17. 17.
    Durocher, S., Mondal, D.: On the Hardness of Point-Set Embeddability (Extended Abstract). In: Rahman, M. S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Colored simultaneous geometric embeddings and universal pointsets. In: CCCG 2009, pp. 17–20 (2009)Google Scholar
  19. 19.
    Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points for one-bend drawings of planar graphs with n vertices. Discr. Comp. Geom. 43(2), 272–288 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    van Garderen, M., Liotta, G., Meijer, H.: Universal point sets for 2-coloured trees. Inf. Process. Lett. 112(8-9), 346–350 (2012)zbMATHCrossRefGoogle Scholar
  21. 21.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  22. 22.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. The American Mathematical Monthly 98, 165–166 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points in the plane. Discr. Comp. Geom. 11, 51–63 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Kaneko, A., Kano, M.: Straight-line embeddings of two rooted trees in the plane. Discr. Comp. Geom. 21(4), 603–613 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kaneko, A., Kano, M.: Straight line embeddings of rooted star forests in the plane. Discr. Appl. Math. 101(1-3), 167–175 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kaneko, A., Kano, M.: Semi-balanced partitions of two sets of points and embeddings of rooted forests. Int. J. Comput. Geometry Appl. 15(3), 229–238 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Alg. Appl. 6(1), 115–129 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex planar graphs. Information Processing Letters 92(2), 95–98 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Combinatorics 17(4), 717–728 (2001)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabrizio Frati
    • 1
  • Marc Glisse
    • 2
  • William J. Lenhart
    • 3
  • Giuseppe Liotta
    • 4
  • Tamara Mchedlidze
    • 5
  • Rahnuma Islam Nishat
    • 6
  1. 1.School of Information TechnologiesThe University of SydneyAustralia
  2. 2.INRIA Saclay – Ile-de-FranceFrance
  3. 3.Computer Science DepartmentWilliams CollegeU.S.A.
  4. 4.Dipartimento Ingegneria Elettronica e dell’InformazioneUniversitá di PerugiaItaly
  5. 5.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)Germany
  6. 6.Department of Computer ScienceUniversity of VictoriaCanada

Personalised recommendations