Self-approaching Graphs

  • Soroush Alamdari
  • Timothy M. Chan
  • Elyot Grant
  • Anna Lubiw
  • Vinayak Pathak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7704)


In this paper we introduce self-approaching graph drawings. A straight-line drawing of a graph is self-approaching if, for any origin vertex s and any destination vertex t, there is an st-path in the graph such that, for any point q on the path, as a point p moves continuously along the path from the origin to q, the Euclidean distance from p to q is always decreasing. This is a more stringent condition than a greedy drawing (where only the distance between vertices on the path and the destination vertex must decrease), and guarantees that the drawing is a 5.33-spanner.

We study three topics: (1) recognizing self-approaching drawings; (2) constructing self-approaching drawings of a given graph; (3)constructing a self-approaching Steiner network connecting a given set of points.

We show that: (1) there are efficient algorithms to test if a polygonal path is self-approaching in ℝ2 and ℝ3, but it is NP-hard to test if a given graph drawing in ℝ3 has a self-approaching uv-path; (2) we can characterize the trees that have self-approaching drawings; (3) for any given set of terminal points in the plane, we can find a linear sized network that has a self-approaching path between any ordered pair of terminals.


self-approaching increasing-chord graph drawing 


  1. 1.
    Angelini, P., Colasante, E., Battista, G.D., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Angelini, P., Didimo, W., Kobourov, S., Mchedlidze, T., Roselli, V., Symvonis, A., Wismath, S.: Monotone Drawings of Graphs with Fixed Embedding. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 379–390. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H., Smid, M., Vigneron, A.: Sparse geometric graphs with small dilation. Computational Geometry 40(3), 207–219 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proc. 15th ACM Symposium on Theory of Computing, New York, pp. 80–86 (1983)Google Scholar
  6. 6.
    Borradaile, G., Eppstein, D.: Near-linear-time deterministic plane Steiner spanners and TSP approximation for well-spaced point sets. In: Proceedings of the 24th Annual Canadian Conference on Computational Geometry, CCCG, Charlottetown, PEI, Canada (2012)Google Scholar
  7. 7.
    Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive routing in the half-θ 6-graph. In: Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 1319–1328 (2012)Google Scholar
  8. 8.
    Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4), 937–951 (2004)Google Scholar
  9. 9.
    Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 67–90 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chan, T.M.: Well-separated pair decomposition in linear time? Inform. Process. Lett. 107, 138–141 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chin, F.Y.L., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discrete & Computational Geometry 45(4), 701–722 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dumitrescu, A., Tóth, C.D.: Light orthogonal networks with constant geometric dilation. Journal of Discrete Algorithms 7(1), 112–129 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ebbers-Baumann, A., Grune, A., Klein, R.: The geometric dilation of finite point sets. Algorithmica 44, 137–149 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ebbers-Baumann, A., Grüne, A., Klein, R., Karpinski, M., Knauer, C., Lingas, A.: Embedding point sets into plane graphs of small dilation. Int. J. Comput. Geometry Appl. 17(3), 201–230 (2007)zbMATHCrossRefGoogle Scholar
  15. 15.
    Eppstein, D.: Spanning trees and spanners. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. North-Holland (2000)Google Scholar
  16. 16.
    Giannopoulos, P., Klein, R., Knauer, C., Kutz, M., Marx, D.: Computing geometric minimum-dilation graphs is NP-hard. Int. J. Comput. Geometry Appl. 20(2), 147–173 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Goodrich, M.T., Strash, D.: Succinct Greedy Geometric Routing in the Euclidean Plane. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 781–791. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Gudmundsson, J., Knauer, C.: Dilation and detour in geometric networks. In: Gonzalez, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC Press (2007)Google Scholar
  19. 19.
    Gudmundsson, J., Klein, O., Knauer, C., Smid, M.: Small Manhattan networks and algorithmic applications for the earth mover’s distance. In: Proc. 23rd European Workshop on Computational Geometry, pp. 174–177 (2007)Google Scholar
  20. 20.
    Har-Peled, S.: Geometric Approximation Algorithms. AMS (2011)Google Scholar
  21. 21.
    He, X., Zhang, H.: On succinct convex greedy drawing of 3-connected plane graphs. In: Proc. 22nd ACM-SIAM Symposium on Discrete Algorithms, pp. 1477–1486 (2011)Google Scholar
  22. 22.
    Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil. Soc. 125, 441–453 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete and Computational Geometry 44, 686–705 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Moitra, A.: A solution to the Papadimitriou-Ratajczak conjecture. Master’s thesis, Massachusetts Institute of Technology (2009)Google Scholar
  25. 25.
    Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press (2007)Google Scholar
  26. 26.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344, 3–14 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proc. 9th International Conference on Mobile Computing and Networking, pp. 96–108 (2003)Google Scholar
  28. 28.
    Rote, G.: Curves with increasing chords. Mathematical Proceedings of the Cambridge Philosophical Society 115, 1–12 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wulff-Nilsen, C.: Computing the maximum detour of a plane geometric graph in subquadratic time. Journal of Computational Geometry 1(1), 101–122 (2010)MathSciNetGoogle Scholar
  30. 30.
    Xia, G.: Improved upper bound on the stretch factor of Delaunay triangulations. In: Proc. 27th ACM Symposium on Computational Geometry, pp. 264–273 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soroush Alamdari
    • 1
  • Timothy M. Chan
    • 1
  • Elyot Grant
    • 2
  • Anna Lubiw
    • 1
  • Vinayak Pathak
    • 1
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations