Towards Applications of Organic Solid-State Lasers

  • Sébastien ForgetEmail author
  • Sébastien Chénais
Part of the Springer Series in Optical Sciences book series (SSOS, volume 175)


While the first decade of research on organic semiconductor lasers (and more generally organic solid-state lasers) aimed at understanding the physics of such emitters and demonstrating efficient laser devices, now numerous application-oriented projects are emerging. They exploit the typical properties of organic emitters (wide tunability, easy fabrication, low thresholds and low cost) and benefit from improvements in device lifetime, output powers, beam quality or wavelength agility. We start this chapter by a brief review of recent research works that are being developed to improve the performance of organic lasers in an application-oriented view: lowering the threshold, extending the wavelength coverage, the wavelength agility (or tunability), improving the conversion efficiency, the beam quality, and the device lifetime. We then report on three major applications for organic lasers: spectroscopy, chemical sensing and short-haul communications.


Beam Quality Effective Refractive Index Slope Efficiency Dielectric Elastomer Good Beam Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Tsiminis et al., Low-threshold organic laser based on an oligofluorene truxene with low optical losses. Appl. Phys. Lett. 94(24), 243304 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    D. Pisignano et al., Emission properties of printed organic semiconductor lasers. Opt. Lett. 30(3), 260 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    V.G. Kozlov et al., Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quantum Electron. 36(1), 18–26 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    R. Xia et al., Low-threshold distributed-feedback lasers based on pyrene-cored starburst molecules with 1,3,6,8-attached oligo(9,9-dialkylfluorene) arms. Adv. Funct. Mater. 19(17), 2844 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Rose et al., Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434(7035), 876–879 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    C. Karnutsch et al., Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90(13), 131104 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    G. Tsiminis et al., A two-photon pumped polyfluorene laser. Appl. Phys. Lett. 94(25), 253304 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Mo et al., Ultraviolet-emitting conjugated polymer poly(9,9[prime or minute]-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV. Chem. Commun. 39, 4925 (2005)CrossRefGoogle Scholar
  9. 9.
    N. Johansson et al., Solid-state amplified spontaneous emission in some spiro-type molecules: a new concept for the design of solid-state lasing molecules. Adv. Mater. 10(14), 1136 (1998)CrossRefGoogle Scholar
  10. 10.
    T. Spehr et al., Organic solid-state ultraviolet-laser based on spiro-terphenyl. Appl. Phys. Lett. 87(16), 161103 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    P. Del Carro et al., Near-infrared imprinted distributed feedback lasers. Appl. Phys. Lett. 89(20), 201105 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    S. Yuyama et al., Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides. Appl. Phys. Lett. 93(2), 023306 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Casalboni et al., 1.3 µm light amplification in dye-doped hybrid sol–gel channel waveguides. Appl. Phys. Lett. 83(3), 416 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New york, 1989)Google Scholar
  15. 15.
    S. Chandra et al., Tunable ultraviolet laser source based on solid-state dye laser technology and CsLiB6O10 harmonic generation. Opt. Lett. 22(4), 209 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    G. Mayer et al., Parametrical conversion of the frequency of organic lasers into the middle-IR range of the spectrum. Russ. Phys. J. 52(6), 640 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Forget et al., Tunable ultraviolet vertically-emitting organic laser. Appl. Phys. Lett. 98(13), 131102 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B. Schutte et al., Continuously tunable laser emission from a wedge-shaped organic microcavity. Appl. Phys. Lett. 92(16), 163309 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    H. Rabbani-Haghighi et al., Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser. Opt. Lett. 35(12), 19681970 (2010)CrossRefGoogle Scholar
  20. 20.
    D. Schneider et al., Ultrawide tuning range in doped organic solid-state lasers. Appl. Phys. Lett. 85(11), 18861888 (2004)CrossRefGoogle Scholar
  21. 21.
    B. Wenger et al., Mechanically tunable conjugated polymer distributed feedback lasers. Appl. Phys. Lett. 97(19), 193303 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    P. Görrn et al., Elastically tunable self-organized organic lasers. Adv. Mater. 23(7), 869 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Döring et al., Electrically tunable polymer DFB laser. Adv. Mater. 23(37), 4265–4269 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Klinkhammer et al., Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode. Opt. Express 20(6), 6357–6364 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Klinkhammer et al., A continuously tunable low-threshold organic semiconductor distributed feedback laser fabricated by rotating shadow mask evaporation. Appl. Phys. B Lasers Opt. 97(4), 787 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    M. Stroisch et al., Intermediate high index layer for laser mode tuning in organic semiconductor lasers. Opt. Express. 18(6), 5890 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    B.H. Wallikewitz et al., A nanoimprinted, optically tuneable organic laser. Appl. Phys. Lett. 100(17), 173301 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Klinkhammer, T. Woggon, U. Lemmer, Tunable Sources: Tunable Organic Semiconductor Lasers: Ready for the Market? (Laser Focus World, 2011)Google Scholar
  29. 29.
    A. Chanishvili et al., Widely tunable ultraviolet-visible liquid crystal laser. Appl. Phys. Lett. 86(5), 051107 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. O’Neill, S.M. Kelly, Ordered materials for organic electronics and photonics. Adv. Mater. 23(5), 566–584 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Coles, S. Morris, Liquid-crystal lasers. Nat. Photon. 4(10), 676–685 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    V.G. Kozlov et al., Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389(6649), 362–364 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    G. Heliotis et al., Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14(1), 91–97 (2004)CrossRefGoogle Scholar
  34. 34.
    G.A. Turnbull et al., Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 82(3), 313–315 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    H. Rabbani-Haghighi et al., Analytical study and performance optimization of vertical external cavity surface-emitting organic lasers. Eur. Phys. J. Appl. Phys. 56, 34108 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S. Riechel et al., A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl. Phys. Lett. 77(15), 2310–2312 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    I.D.W. Samuel, G.A. Turnbull, Polymer lasers: recent advances. Mater. Today 7(9), 28–35 (2004)CrossRefGoogle Scholar
  38. 38.
    V.G. Kozlov et al., Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys. 84(8), 4096–4108 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    G. Heliotis et al., Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. J. Appl. Phys. 96(12), 6959–6965 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    S. Richardson et al., Improved operational lifetime of semiconducting polymer lasers by encapsulation. Appl. Phys. Lett. 91(26), 261104 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    L. Persano et al., Rapid prototyping encapsulation for polymer light-emitting lasers. Appl. Phys. Lett. 94, 123305 (2009)Google Scholar
  42. 42.
    B. Guilhabert et al., Amplified spontaneous emission in free-standing membranes incorporating star-shaped monodisperse π-conjugated truxene oligomers. J. Opt. 12(3), 035503 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    C. Vannahme et al., All-polymer organic semiconductor laser chips: parallel fabrication and encapsulation. Opt. Express. 18(24), 24881–24887 (2010)CrossRefGoogle Scholar
  44. 44.
    T.H. Maiman, Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  45. 45.
    A.E. Siegman, Lasers (University Science Books, Mill valley, 1986)Google Scholar
  46. 46.
    A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112(6), 1940–1949 (1958)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Yang et al., Laser properties and photostabilities of laser dyes doped in ORMOSILs. Opt. Mater. 24(4), 621–628 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    H. Yoshioka et al., Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser. Opt. Express 20(4), 4690–4696 (2012)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    D. Schneider et al., An ultraviolet organic thin-film solid-state laser for biomarker applications. Adv. Mater. 17(1), 31–34 (2005)CrossRefGoogle Scholar
  50. 50.
    T. Woggon, S. Klinkhammer, U. Lemmer, Compact spectroscopy system based on tunable organic semiconductor lasers. Appl. Phys. B 99(1–2), 47–51 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    S. Balslev et al., Lab-on-a-chip with integrated optical transducers. Lab Chip 6(2), 213 (2006)MathSciNetCrossRefGoogle Scholar
  52. 52.
    C. Vannahme et al., Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers. Opt. Express 19(9), 8179 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    C. Vannahme et al., Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate. Microelectron. Eng. 87(5–8), 693–695 (2010)CrossRefGoogle Scholar
  54. 54.
    Y. Yang, G.A. Turnbull, I.D.W. Samuel, Hybrid optoelectronics: a polymer laser pumped by a nitride light-emitting diode. Appl. Phys. Lett. 92(16), 163306 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    S. Richardson et al., Chemosensing of 1,4-dinitrobenzene using bisfluorene dendrimer distributed feedback lasers. Appl. Phys. Lett. 95(6), 063305 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Y. Yang, G.A. Turnbull, I.D.W. Samuel, Sensitive explosive vapor detection with polyfluorene lasers. Adv. Funct. Mater. 20(13), 2093–2097 (2010)CrossRefGoogle Scholar
  57. 57.
    M. Lu et al., Plastic distributed feedback laser biosensor. Appl. Phys. Lett. 93(11), 111113 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    J. Clark, G. Lanzani, Organic photonics for communications. Nat. Photon. 4(7), 438–446 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    J.R. Lawrence et al., Optical amplification in a first-generation dendriticorganic semiconductor. Opt. Lett. 29(8), 869 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    D. Amarasinghe et al., Organic semiconductor optical amplifiers. Proc. IEEE 97(9), 1637–1650 (2009)CrossRefGoogle Scholar
  61. 61.
    G. Heliotis et al., Operating characteristics of a traveling-wave semiconducting polymer optical amplifier. Appl. Phys. Lett. 85(25), 6122–6124 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    M.M. Mroz et al., Laser action from a sugar-threaded polyrotaxane. Appl. Phys. Lett. 95(3), 031108 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    R. Xia et al., Wavelength conversion from silica to polymer optical fibre communication wavelengths via ultrafast optical gain switching in a distributed feedback polymer laser. Adv. Mater. 19(22), 4054–4057 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique des LasersParis 13 UniversityVilletaneuseFrance

Personalised recommendations