Organic Lasers Resonators

  • Sébastien ForgetEmail author
  • Sébastien Chénais
Part of the Springer Series in Optical Sciences book series (SSOS, volume 175)


In this chapter we present the main resonators used for organic solid-state lasers, with a special emphasis on those based on thin-films such as planar waveguides or vertical external surface-emitting cavities. The influence of the resonator type on the laser properties (threshold, efficiency slope, output power, beam quality) is reviewed, with a special emphasis on works published after the year 2000.


Cavity Length Gain Medium Slope Efficiency Distribute Bragg Reflector Whisper Gallery Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.P. Schafer, W. Schmidt, J. Volze, Organic dye solution laser. Appl. Phys. Lett. 9(8), 306 (1966)Google Scholar
  2. 2.
    D. Moses, High quantum efficiency luminescence from a conducting polymer in solution—a novel polymer laser-dye. Appl. Phys. Lett. 60(26), 3215–3216 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    A. Costela, I. García-Moreno, R. Sastre, Solid-state dye lasers, in Tunable Laser Applications 2nd edn., ed. by F.J. Duarte (CRC, New York, 2009), pp. 97–120Google Scholar
  4. 4.
    R.E. Hermes et al., High-efficiency pyrromethene doped solid-state dye-lasers. Appl. Phys. Lett. 63(7), 877–879 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    M. Faloss et al., Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels. Appl. Opt. 36(27), 6760–6763 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    I. Garcia-Moreno et al., Materials for a reliable solid-state dye laser at the red spectral edge. Adv. Funct. Mater. 19(16), 2547–2552 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Canva et al., Perylene-doped and pyrromethene-doped xerogel for a pulsed-laser. Appl. Opt. 34(3), 428–431 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    K.C. Yee, T.Y. Tou, S.W. Ng, Hot-press molded poly(methyl methacrylate) matrix for solid-state dye lasers. Appl. Opt. 37(27), 6381–6385 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    M.J. Cazeca et al., Epoxy matrix for solid-state dye laser applications. Appl. Opt. 36(21), 4965–4968 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    R. Bornemann, U. Lemmer, E. Thiel, Continuous-wave solid-state dye laser. Opt. Lett. 31(11), 1669–1671 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R. Bornemann, E. Thiel, P.H. Bolívar, High-power solid-state cw dye laser. Opt. Express 19(27), 26382–26393 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R. Bornemann, E. Thiel, U. Lemmer, The Dye Laser Disk: CW Lasing from a Polymer. Photonik international, 2007: p. 69–71Google Scholar
  13. 13.
    Okamoto, K., Fundamentals of Optical Waveguides, 2nd edn. (Academic Press, London, 2005)Google Scholar
  14. 14.
    V.G. Kozlov et al., Laser action in organic semiconductor waveguide and double-heterostructure devices. Nature 389(6649), 362–364 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    V.G. Kozlov, S.R. Forrest, Lasing action in organic semiconductor thin films. Curr. Opin. Solid State Mater. Sci. 4(2), 203–208 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    H. Kogelnik, C.V. Shank, J. Appl. Phys. 43, 2327 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    W. Holzer et al., Corrugated neat thin-film conjugated polymer distributed-feedback lasers. Appl. Phys. B-Lasers Opt. 74(4–5), 333–342 (2002)ADSGoogle Scholar
  18. 18.
    G. Heliotis et al., Blue, surface-emitting, distributed feedback polyfluorene lasers. Appl. Phys. Lett. 83(11), 2118–2120 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Vasdekis et al., Low threshold edge emitting polymer distributed feedback laser based on a square lattice. Appl. Phys. Lett. 86(16) (2005)Google Scholar
  20. 20.
    S. Riechel et al., A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl. Phys. Lett. 77(15), 2310–2312 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    N. Tsutsumi, T. Ishibashi, Organic dye lasers with distributed Bragg reflector grating and distributed feedback resonator. Opt. Express 17(24), 21698 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Rabbani-Haghighi et al., Laser operation in nondoped thin films made of a small-molecule organic red-emitter. Appl. Phys. Lett. 95(3), 033305 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A.E. Vasdekis et al., Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend. Opt. Express 14(20), 9211–9216 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    T. Riedl et al., Tunable organic thin-film laser pumped by an inorganic violet diode laser. Appl. Phys. Lett. 88(24), 241116 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    T. Rabe et al., Quasi-continuous-wave operation of an organic thin-film distributed feedback laser. Appl. Phys. Lett. 89(8) (2006)Google Scholar
  26. 26.
    R. Xia et al., Low-threshold distributed-feedback lasers based on pyrene-cored starburst molecules with 1,3,6,8-attached Oligo(9,9-Dialkylfluorene) arms. Adv. Funct. Mater. 19(17), 2844 (2009)CrossRefGoogle Scholar
  27. 27.
    D. Schneider et al., Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative. Appl. Phys. Lett. 84(23), 4693–4695 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    D. Pisignano et al., Flexible organic distributed feedback structures by soft lithography. Synth. Met. 137(1–3), 1057–1058 (2003)CrossRefGoogle Scholar
  29. 29.
    D. Pisignano et al., Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. Appl. Phys. Lett. 83(13), 2545–2547 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    D. Schneider et al., Organic solid-state lasers based on sexiphenyl as active chromophore. J. Appl. Phys. 98(4) (2005)Google Scholar
  31. 31.
    S. Riechel et al., Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. Opt. Lett. 26(9), 593–595 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    K. Baumann et al., Organic mixed-order photonic crystal lasers with ultrasmall footprint. Appl. Phys. Lett. 91(17) (2007)Google Scholar
  33. 33.
    K. Baumann et al., Design and optical characterization of photonic crystal lasers with organic gain material. J. Opt. 12(6) (2010)Google Scholar
  34. 34.
    G. Heliotis et al., Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium. J. Appl. Phys. 96(12), 6959–6965 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    G. Heliotis et al., Emission characteristics and performance comparison of polyfluorene lasers with one- and two-dimensional distributed feedback. Adv. Funct. Mater. 14(1), 91–97 (2004)CrossRefGoogle Scholar
  36. 36.
    G.A. Turnbull et al., Operating characteristics of a semiconducting polymer laser pumped by a microchip laser. Appl. Phys. Lett. 82(3), 313–315 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    C. Karnutsch et al., Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design. Appl. Phys. Lett. 90(13), 131104 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    S.V. Frolov et al., Stimulated emission in high-gain organic media. Phys. Rev. B 59(8), R5284–R5287 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    J. Fallert et al., Co-existence of strongly and weakly localized random laser modes. Nat. Photon 3(5), 279–282 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    D.S. Wiersma, Laser physics: random lasers explained? Nat. Photon 3(5), 246–248 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4(5), 359–367 (2008)CrossRefGoogle Scholar
  42. 42.
    N.M. Lawandy et al., Laser action in strongly scattering media. Nature 368(6470), 436–438 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    S.V. Frolov, Z.V. Vardeny, Stimulated emission in poly(p-phenylene-vinylene) films. Synth. Met. 111, 507–508 (2000)CrossRefGoogle Scholar
  44. 44.
    M. Anni et al., Emission properties of organic random lasers. Phys. Status Solidi (c) 1(3), 450–453 (2004)Google Scholar
  45. 45.
    C. Vanneste, P. Sebbah, H. Cao, Lasing with resonant feedback in weakly scattering random systems. Phys. Rev. Lett. 98(14), 143902 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)ADSCrossRefGoogle Scholar
  47. 47.
    J. Billy et al., Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453(7197), 891–894 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    M. Störzer et al., Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett. 96(6), 063904 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    D.S. Wiersma et al., Localization of light in a disordered medium. Nature 390(6661), 671–673 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    N. Tessler, G.J. Denton, R.H. Friend, Lasing from conjugated-polymer microcavities. Nature 382(6593), 695–697 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    V. Bulovic et al., Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities. Science 279(5350), 553–555 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    A. Schulzgen et al., Near diffraction-limited laser emission from a polymer in a high finesse planar cavity. Appl. Phys. Lett. 72(3), 269–271 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    L. Persano et al., Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers. Appl. Phys. Lett. 89(12) (2006)Google Scholar
  54. 54.
    M. Koschorreck et al., Dynamics of a high-Q vertical-cavity organic laser. Appl. Phys. Lett. 87(18) (2005)Google Scholar
  55. 55.
    H. Sakata, H. Takeuchi, Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW. Appl. Phys. Lett. 92(11) (2008)Google Scholar
  56. 56.
    I.D.W. Samuel, E.B. Namdas, G.A. Turnbull, How to recognize lasing. Nat. Photonics 3(10), 546–549 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    B. Schutte et al., Continuously tunable laser emission from a wedge-shaped organic microcavity. Appl. Phys. Lett. 92(16) (2008)Google Scholar
  58. 58.
    S.V. Frolov, Z.V. Vardeny, K. Yoshino, Plastic microring lasers on fibers and wires. Appl. Phys. Lett. 72(15), 1802–1804 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    G. Ramos-Ortiz et al., Temperature dependence of the threshold for laser emission in polymer microlasers. Appl. Phys. Lett. 77(18), 2783 (2000)ADSCrossRefGoogle Scholar
  60. 60.
    R. Baktur, L.W. Pearson, J. Ballato, Theoretical determination of lasing resonances in a microring. J. Appl. Phys. 101(4), 043102 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    S.V. Frolov et al., Cylindrical microlasers and light emitting devices from conducting polymers. Appl. Phys. Lett. 72(22), 2811–2813 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    S.X. Dou et al., Polymer microring lasers with longitudinal optical pumping. Appl. Phys. Lett. 80(2), 165–167 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    S.V. Frolov et al., Lasing and stimulated emission in pi-conjugated polymers. IEEE J. Quantum Electron. 36(1), 2–11 (2000)ADSCrossRefGoogle Scholar
  64. 64.
    M. Lebental et al., Directional emission of stadium-shaped microlasers. Phys. Rev. A, 75(3) (2007)Google Scholar
  65. 65.
    M. Lebental et al., Inferring periodic orbits from spectra of simply shaped microlasers. Phys. Rev. A 76, 023830 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    M. Berggren et al., Solid-state droplet laser made from an organic blend with a conjugated polymer emitter. Adv. Mat. 9(12), 968 (1997)Google Scholar
  67. 67.
    M. Zavelani-Rossi et al., Organic laser based on thiophene derivatives. Synth. Met. 139(3), 901–903 (2003)CrossRefGoogle Scholar
  68. 68.
    H. Rabbani-Haghighi et al., Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser. Opt. Lett. 35(12), 1968–1970 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    M. Kuznetsov et al., High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Photonics Technol. Lett. 9(8), 1063–1065 (1997)ADSCrossRefGoogle Scholar
  70. 70.
    H. Rabbani-Haghighi et al., Analytical study and performance optimization of vertical external cavity surface-emitting organic lasers. Eur. Phys. J. Appl. Phys. 56(3) (2011)Google Scholar
  71. 71.
    A. Tyagi et al., Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon-containing organic copolymers. Chem. Phys. 342(1–3), 201 (2007)Google Scholar
  72. 72.
    S. Chénais et al., Laser turn-on behavior in organic vertical-external cavity surface-emitting lasers. Proc. of SPIE 8433, 84331N (2012). doi: 10.1117/12.922655
  73. 73.
    S. Forget et al., Tunable ultraviolet vertically-emitting organic laser. Appl. Phys. Lett. 98(13), 131102 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique des LasersParis 13 UniversityVilletaneuseFrance

Personalised recommendations