Fundamentals of Organic Lasers

  • Sébastien ForgetEmail author
  • Sébastien Chénais
Part of the Springer Series in Optical Sciences book series (SSOS, volume 175)


In this chapter the main characteristics and specificities of organic solid-state lasers are presented. We particularly highlight these aspects which are important for organic lasers and specific to them, and which are therefore not usually treated in classical textbooks on lasers. The objective of this chapter is to present a quite general, while not exhaustive, overview of the photophysics of organic compounds that are directly useful to understand the physics of organic lasers, as well as a theoretical framework suited to the description of these lasers in most practical situations.


Triplet State High Occupy Molecular Orbital Lower Unoccupied Molecular Orbital Organic Semiconductor Stimulate Emission Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Holzer et al., Spectroscopic and travelling-wave lasing characterisation of Gilch-type and Horner-type MEH-PPV. Synth. Met. 140(2–3), 155–170 (2004)CrossRefGoogle Scholar
  2. 2.
    J.C. Ribierre et al., Amplified spontaneous emission and lasing properties of bisfluorene-cored dendrimers. Appl. Phys. Lett. 91(081108) (2007)Google Scholar
  3. 3.
    E. Ishow et al., Multicolor emission of small molecule-based amorphous thin films and nanoparticles with a single excitation wavelength. Chem. Mater. 20(21), 6597–6599 (2008)CrossRefGoogle Scholar
  4. 4.
    C.H. Kim et al., Modeling the low-voltage regime of organic diodes: origin of the ideality factor. J. Appl. Phys. 110(9), 093722 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    V. Coropceanu et al., Hole- and electron-vibrational couplings in Oligoacene crystals: intramolecular contributions. Phys. Rev. Lett. 89(27), 275503 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Malagoli, J.L. Bredas, Density functional theory study of the geometric structure and energetics of triphenylamine-based hole-transporting molecules. Chem. Phys. Lett. 327(1–2), 13–17 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    V. Coropceanu et al., Charge transport in organic semiconductors. Chem. Rev. 107(4), 926 (2007)CrossRefGoogle Scholar
  8. 8.
    Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 107(4), 953 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Moliton, Optoelectronics of molecules and polymers (Springer, New York, 2005)Google Scholar
  10. 10.
    P.M. Borsenberger, L. Pautmeier, H. Bassler, Charge transport in disordered molecular solids. J. Chem. Phys. 94(8), 5447–5454 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    I.I. Fishchuk et al., Nondispersive polaron transport in disordered organic solids. Phys. Rev. B 67(22), 224303 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    L. Li, H. Kosina, Charge transport in organic semiconductor devices, in Organic Electronics, ed. by T. Grasser, G. Meller (Springer, Berlin, 2010), p. 301Google Scholar
  13. 13.
    S. Moller, G. Weiser, C. Lapersonne-Meyer, Excitonic photoconductivity of 4BCMU polydiacetylene single crystals. Synth. Met. 116(1–3), 23–26 (2001)CrossRefGoogle Scholar
  14. 14.
    S.F. Alvarado et al., Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope. Phys. Rev. Lett. 81(5), 1082–1085 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    P.P. Sorokin, R. Lankard, Stimulated emission observed from an organic dye, chloro-aluminium phtalocyanine. IBM J. Res. Develop 10, 162–163 (1966)CrossRefGoogle Scholar
  16. 16.
    F.P. Schafer (ed.), Dye Lasers. Topics in Applied Physics, vol. 3, ed. by F.P. Schafer (Springer, Berlin, 1973), p. 285Google Scholar
  17. 17.
    R. Bornemann, U. Lemmer, E. Thiel, Continuous-wave solid-state dye laser. Opt. Lett. 31(11), 1669 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    S. Chénais, S. Forget, Recent advances in solid-state organic lasers. Polym. Int. 61(3), 390–406 (2012)CrossRefGoogle Scholar
  19. 19.
    C.H.J. Wells, Introduction to Molecular Photochemistry. Chapman and Hall Chemistry Textbook Series (Chapman and Hall, New York, 1972)Google Scholar
  20. 20.
    J.M. Holt, Ultrafast Optical Measurements of Charge Generation and Transfer Mechanisms of Pi-conjugated Polymers for Solar Cell Applications, University of Utah, 2009Google Scholar
  21. 21.
    P. Chaquin, F. Fuster, Orbimol Laboratoire de Chimie Théorique, (UPMC Univ Paris 6, UMR CNRS 7616, Paris, 2012),
  22. 22.
    H.A.M. van Mullekom et al., Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Reports 32(1), 1–40 (2001)CrossRefGoogle Scholar
  23. 23.
    J. Roncali, Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 28(17), 1761–1775 (2007)CrossRefGoogle Scholar
  24. 24.
    C.A. Coulson, Excited electronic levels in conjugated molecules: I. Long wavelength ultra-violet absorption of naphthalene, anthracene and homologs. Proc. Phys. Soc. 60(3), 257 (1948)Google Scholar
  25. 25.
    T.H. Fay, S.D. Graham, Coupled spring equations. Int. J. Math. Educ. Sci. Technol. 34(1), 65–79 (2003)CrossRefGoogle Scholar
  26. 26.
    A.C. Tropper et al., Vertical-external-cavity semiconductor lasers. J. Phys. D Appl. Phys. 37(9), R75 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    S. Jasprit, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2007), p. 560Google Scholar
  28. 28.
    G.G. Malliaras et al., Nondispersive electron transport in Alq[sub 3]. Appl. Phys. Lett. 79(16), 2582 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    T. Susdorf et al., Photophysical characterisation of some dipyrromethene dyes in ethyl acetate and covalently bound to poly(methyl methacrylate). Chem. Phys. 312(1–3), 151–158 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    I. Gozhyk et al., Polarization properties of solid-state organic lasers. Phys. Rev. A 86(4), 043817 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    I. Gozhyk et al., Towards polarization controlled organic micro-lasers. in Photonics West (SPIE, San Francisco, 2012)Google Scholar
  32. 32.
    B. Valeur, Molecular Fluorescence (Wiley-VCH, Weinheim, 2001)Google Scholar
  33. 33.
    H.-W. Lin et al., Tuning stimulated emission of organic thin films by molecular reorientation. Appl. Phys. Lett. 87(7), 071910–071913 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    F.J. Duarte, Tunable Laser Applications, 2nd edn. (CRC Press, New York, 2009)Google Scholar
  35. 35.
    M. Goossens et al., Subpicosecond pulses from a gain-switched polymer distributed feedback laser. Appl. Phys. Lett. 85(1), 31 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    P. Atkins, J.D. Paula, Physical Chemistry (Oxford University Press, New York, 2006)Google Scholar
  37. 37.
    M. Fox, Optical Properties of Solids. (Oxford Master Series in Condensed Matter Physics) (Oxford University Press, New York, 2002)Google Scholar
  38. 38.
    S. Forget et al., Red-emitting fluorescent organic light emitting diodes with low sensitivity to self-quenching. J. Appl. Phys. 108(064509) (2010)Google Scholar
  39. 39.
    S.J. Strickler, R.A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37(4), 814–822 (1962)ADSCrossRefGoogle Scholar
  40. 40.
    W. Holzer, A. Penzkofer, T. Tsuboi, Absorption and emission spectroscopic characterization of Ir(ppy)(3). Chem. Phys. 308(1–2), 93–102 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    M. Reufer, J.M. Lupton, U. Scherf, Stimulated emission depletion of triplet excitons in a phosphorescent organic laser. Appl. Phys. Lett. 89(14), 141111–141113 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780–782 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    M.D. McGehee et al., Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett. 72(13), 1536–1538 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    S. Chandra et al., Tunable ultraviolet laser source based on solid-state dye laser technology and CsLiB6O10 harmonic generation. Opt. Lett. 22(4), 209 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    S. Forget et al., Tunable ultraviolet vertically-emitting organic laser. Appl. Phys. Lett. 98(13), 131102 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    X.H. Yang et al., Highly efficient polymeric electrophosphorescent diodes. Adv. Mater. 18(7), 948 (2006)Google Scholar
  47. 47.
    Y.F. Pedash et al., Spin-orbit coupling and luminescence characteristics of conjugated organic molecules. I. Polyacenes. J. Mol. Struct. (Thoechem) 585(1), 49–59 (2002)CrossRefGoogle Scholar
  48. 48.
    R.F. Kubin, A.N. Fletcher, The effect of oxygen on the fluorescence quantum yields of some coumarin dyes in ethanol. Chem. Phys. Lett. 99(1), 49–52 (1983)ADSCrossRefGoogle Scholar
  49. 49.
    G. Tsiminis et al., A two-photon pumped polyfluorene laser. Appl. Phys. Lett. 94(25), 253304 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Mo et al., Ultraviolet-emitting conjugated polymer poly(9,9[prime or minute]-alkyl-3,6-silafluorene) with a wide band gap of 4.0 eV. Chem. Commun. 39, 4925 (2005)CrossRefGoogle Scholar
  51. 51.
    N. Johansson et al., Solid-state amplified spontaneous emission in some spiro-type molecules: a new concept for the design of solid-state lasing molecules. Adv. Mater. 10(14), 1136 (1998)CrossRefGoogle Scholar
  52. 52.
    T. Spehr et al., Organic solid-state ultraviolet-laser based on spiro-terphenyl. Appl. Phys. Lett. 87(16), 161103 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    J.V. Caspar, T.J. Meyer, Application of the energy gap law to nonradiative, excited-state decay. J. Phys. Chem. 87(6), 952–957 (1983)CrossRefGoogle Scholar
  54. 54.
    P. Del Carro et al., Near-infrared imprinted distributed feedback lasers. Appl. Phys. Lett. 89(20), 201105 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    S. Yuyama et al., Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides. Appl. Phys. Lett. 93(2), 023306 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    M. Casalboni et al., 1.3 mu m light amplification in dye-doped hybrid sol-gel channel waveguides. Appl. Phys. Lett. 83(3), 416 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    C. Winder, N.S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14(7), 1077–1086 (2004)CrossRefGoogle Scholar
  58. 58.
    R.E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1956)Google Scholar
  59. 59.
  60. 60.
    S.A. Jenekhe, A class of narrow-band-gap semiconducting polymers. Nature 322(6077), 345–347 (1986)ADSCrossRefGoogle Scholar
  61. 61.
    M.A. Baldo et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698), 151–154 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    M. Lehnhardt et al., Impact of triplet absorption and triplet-singlet annihilation on the dynamics of optically pumped organic solid-state lasers. Phys. Rev. B 81(16), 165206 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Y. Zhang, S.R. Forrest, Existence of continuous-wave threshold for organic semiconductor lasers. Phys. Rev. B 84(24), 241301 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    S. Schols et al., Triplet excitation scavenging in films of conjugated polymers. Chem. Phys. Chem. 10(7), 1071–1076 (2009)CrossRefGoogle Scholar
  65. 65.
    S. Kéna-Cohen et al., Plasmonic sinks for the selective removal of long-lived states. ACS Nano 5(12), 9958–9965 (2011)CrossRefGoogle Scholar
  66. 66.
    M.A. Baldo, R.J. Holmes, S.R. Forrest, Prospects for electrically pumped organic lasers. Phys. Rev. B 66(3), 035321 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    N.C. Giebink, S.R. Forrest, Temporal response of optically pumped organic semiconductor lasers and its implication for reaching threshold under electrical excitation. Phys. Rev. B 79(073302) (2009)Google Scholar
  68. 68.
    N.C. Giebink, Y. Sun, S.R. Forrest, Transient analysis of triplet exciton dynamics in amorphous organic semiconductor thin films. Org. Electron. 7(5), 375–386 (2006)CrossRefGoogle Scholar
  69. 69.
    A. Kohler, H. Bassler, Triplet states in organic semiconductors. Mater. Sci. Eng. R Reports 66(4–6), 71–109 (2009)CrossRefGoogle Scholar
  70. 70.
    S.P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State, ed.(P.-H. International, Hemel Hempstead, 1969). ISBN: 0135996627Google Scholar
  71. 71.
    A. Köhler, D. Beljonne, The singlet–triplet exchange energy in conjugated polymers. Adv. Funct. Mater. 14(1), 11–18 (2004)CrossRefGoogle Scholar
  72. 72.
    J. Michl, E.W. Thulstrup, Why is azulene blue and anthracene white? A simple mo picture. Tetrahedron 32(2), 205–209 (1976)CrossRefGoogle Scholar
  73. 73.
    C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics/Claude Cohen-Tannoudji, Bernard Diu, Franck Laloe; translated from the French by Susan Reid Hemley, Nicole Ostrowsky, Dan Ostrowsky (Wiley, New York, 1977)Google Scholar
  74. 74.
    X. Yang et al., Saturation, relaxation, and dissociation of excited triplet excitons in conjugated polymers. Adv. Mater. 21(8), 916–919 (2009)CrossRefGoogle Scholar
  75. 75.
    C. Adachi et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 90(10), 5048–5051 (2001)ADSCrossRefGoogle Scholar
  76. 76.
    S. Schols, Device Architecture and Materials for Organic Light-Emitting Devices, 1st edn. (Springer, Berlin, 2011). ISBN: 9789400716070Google Scholar
  77. 77.
    J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)Google Scholar
  78. 78.
    R.M. Clegg, Förster resonance energy transfer—FRET what is it, why do it, and how it’s done, in Laboratory Techniques in Biochemistry and Molecular Biology, vol. 33, ed. by T.W.J. Gadella, (Elsevier, Amsterdam, 2009), pp. 1–57Google Scholar
  79. 79.
    D.F. Evans, 257. Perturbation of singlet-triplet transitions of aromatic molecules by oxygen under pressure. J. Chem. Soc. (Resumed), 1957, 1351–1357 (1957)Google Scholar
  80. 80.
    M. Lebental et al., Diffusion of triplet excitons in an operational organic light-emitting diode. Phys. Rev. B 79(165318) (2009)Google Scholar
  81. 81.
    R.R. Lunt, et al., Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105(053711) (2009)Google Scholar
  82. 82.
    G. Weber, Dependence of the polarization of the fluorescence on the concentration. Trans. Faraday Soc. 50, 552–555 (1954)CrossRefGoogle Scholar
  83. 83.
    S.Y. Arzhantsev et al., On the singlet–singlet annihilation of the excited states of Rhodamine 3B in a polymer film. Laser Phys. 9(2), 466–469 (1999)Google Scholar
  84. 84.
    C. Gärtner, Organic Laser Diodes: Modelling and Simulation (Universitätsverlag Karlsruhe, Karlsruhe, 2009)Google Scholar
  85. 85.
    M.A. Baldo et al., Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999)ADSCrossRefGoogle Scholar
  86. 86.
    E.J.W. List et al., Direct evidence for singlet-triplet exciton annihilation in π-conjugated polymers. Phys. Rev. B 66(23), 235203 (2002)ADSCrossRefGoogle Scholar
  87. 87.
    M.A. Baldo, C. Adachi, S.R. Forrest, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Phys. Rev. B. 62(16), 10967–10977 (2000)Google Scholar
  88. 88.
    A. Siegman, Lasers (University Science Books, Mill Valey, 1986)Google Scholar
  89. 89.
    M. Koschorreck et al., Dynamics of a high-Q vertical-cavity organic laser. Appl. Phys. Lett. 87(181108) (2005)Google Scholar
  90. 90.
    L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-VCH, New York, 1997)Google Scholar
  91. 91.
    C. Delsart, Lasers & Optique Non Linéaire (Ellipses, Paris, 2008), p. 426Google Scholar
  92. 92.
    C. Gartner et al., The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101(2), 023107 (2007)ADSCrossRefGoogle Scholar
  93. 93.
    G. Lanzani et al., Triplet-exciton generation mechanism in a new soluble (Red-Phase) Polydiacetylene. Phys. Rev. Lett. 87(18), 187402 (2001)ADSCrossRefGoogle Scholar
  94. 94.
    J. Widengren, R. Rigler, Ü. Mets, Triplet-state monitoring by fluorescence correlation spectroscopy. J. Fluoresc. 4(3), 255–258 (1994)CrossRefGoogle Scholar
  95. 95.
    A. Penzkofer, W. Falkenstein, Theoretical investigation of amplified spontaneous emission with picosecond light pulses in dye solutions. Opt. Quant. Electron. 10(5), 399–423 (1978)CrossRefGoogle Scholar
  96. 96.
    C. Gartner et al., The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101(2), 023107–023109 (2007)ADSCrossRefGoogle Scholar
  97. 97.
    C. Zenz et al., Ultrafast photogeneration mechanisms of triplet states in para-hexaphenyl. Phys. Rev. B 59(22), 14336–14341 (1999)ADSCrossRefGoogle Scholar
  98. 98.
    H. Rabbani-Haghighi et al., Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser. Opt. Lett. 35(12), 1968–1970 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    D. Cahen, A. Kahn, E. Umbach, Energetics of molecular interfaces. Mater. Today 8(7), 32–41 (2005)CrossRefGoogle Scholar
  100. 100.
    H.A.M. van Mullekom et al., Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Reports 32(1), 1 (2001)CrossRefGoogle Scholar
  101. 101.
    M.P. Lettinga, H. Zuilhof, M.A.M.J. van Zandvoort, Phosphorescence and fluorescence characterization of fluorescein derivatives immobilized in various polymer matrices. Phys. Chem. Chem. Phys. 2(16), 3697–3707 (2000)CrossRefGoogle Scholar
  102. 102.
    T.G. Pavlopoulos et al., Laser action from syn-(methyl, methyl) bimane. J. Appl. Phys. 60(11), 4028–4030 (1986)ADSCrossRefGoogle Scholar
  103. 103.
    A. Costela et al., Polymeric matrices for lasing dyes: recent developments. Laser Chem. 18(1–2), 63–84 (1998)CrossRefGoogle Scholar
  104. 104.
    J. Yu et al., Singlet-triplet and triplet–triplet interactions in conjugated polymer single molecules. J. Phys. Chem. B 109(20), 10025–10034 (2005)CrossRefGoogle Scholar
  105. 105.
    M.A. Stevens et al., Exciton dissociation mechanisms in the polymeric semiconductors poly(9,9-dioctylfluorene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Phys. Rev. B 63(16), 165213 (2001)ADSCrossRefGoogle Scholar
  106. 106.
    E.J.W. List et al., Direct evidence for singlet-triplet exciton annihilation in pi-conjugated polymers. Phys. Rev. B 66(235203) (2002)Google Scholar
  107. 107.
    G.D. Hale, S.J. Oldenburg, N.J. Halas, Observation of triplet exciton dynamics in conjugated polymer films using two-photon photoelectron spectroscopy. Phys. Rev. B 55(24), R16069–R16071 (1997)ADSCrossRefGoogle Scholar
  108. 108.
    D. Hertel, K. Meerholz, Triplet-polaron quenching in conjugated polymers. J. Phys. Chem. B 111(42), 12075–12080 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique des LasersParis 13 UniversityVilletaneuseFrance

Personalised recommendations