Reduced Ordering Technique of Impulsive Noise Removal in Color Images

  • Bogdan Smolka
  • Krystyna Malik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7786)

Abstract

In the paper a fast technique of impulsive noise removal in color images is described. The proposed method is assigning to pixels of the filtering window the sum of the distances to their k nearest neighbors. The difference between the trimmed sum assigned to the central pixel and to the pixel minimizing the cumulated distances is treated as a measure of pixel’s distortion caused by the impulsive noise process. If the difference exceeds a global threshold value, then the central pixel of the processing window is replaced by the mean of the pixels from the window, which were found to be not corrupted, otherwise the central pixel is retained. The new filtering design is able to effectively suppress impulsive noise, while preserving fine image details. The performance comparison shows that the proposed filtering design yields significantly better denoising results than the most efficient filters developed for the impulsive noise suppression in color images.

Keywords

Color image enhancement impulsive noise reduction 

References

  1. 1.
    Plataniotis, K., Venetsanopoulos, A.: Color Image Processing and Applications. Springer (2000)Google Scholar
  2. 2.
    Lukac, R., Smolka, B., Martin, K., Plataniotis, K., Venetsanopoulos, A.: Vector filtering for color imaging. IEEE Signal Processing Magazine 22(1), 74–86 (2005)CrossRefGoogle Scholar
  3. 3.
    Boncelet, C.G.: Image noise models. In: Bovik, A. (ed.) Handbook of Image and Video Processing, pp. 325–335. Academic Press (2000)Google Scholar
  4. 4.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proceedings of the IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  5. 5.
    Smolka, B., Plataniotis, K., Venetsanopoulos, A.: Nonlinear techniques for color image processing. In: Nonlinear Signal and Image Processing: Theory, Methods, and Applications, pp. 445–505. CRC Press (2004)Google Scholar
  6. 6.
    Smolka, B., Venetsanopoulos, A.: Noise reduction and edge detection in color images. In: Color Image Processing: Methods and Applications, pp. 75–100. CRC Press (2007)Google Scholar
  7. 7.
    Lukac, R.: Adaptive vector median filtering. Pattern Recognition Letters 24(12), 1889–1899 (2003)CrossRefGoogle Scholar
  8. 8.
    Smolka, B., Chydzinski, A., Wojciechowski, K.W., Plataniotis, K.N., Venetsanopoulos, A.N.: On the reduction of impulsive noise in multichannel image processing. Optical Engineering 40(6), 902–908 (2001)CrossRefGoogle Scholar
  9. 9.
    Smolka, B., Plataniotis, K.N., Chydzinski, A., Szczepanski, M., Venetsanopoulos, A.N., Wojciechowski, K.: Self-adaptive algorithm of impulsive noise reduction in color images. Pattern Recognition 35(8), 1771–1784 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Smolka, B., Chydzinski, A.: Fast detection and impulsive noise removal in color images. Real-Time Imaging 11(5-6), 389–402 (2005); Special Issue on Multi-Dimensional Image ProcessingCrossRefGoogle Scholar
  11. 11.
    Smolka, B.: Peer group switching filter for impulse noise reduction in color images. Pattern Recognition Letters 31(6) (2010)Google Scholar
  12. 12.
    Ma, Z., Feng, D., Wu, H.: A neighborhood evaluated adaptive vector filter for suppression of impulse noise in color images. Real-Time Imaging 11(5-6), 403–416 (2005)CrossRefGoogle Scholar
  13. 13.
    Morillas, S., Gregori, V., Peris-Fajarneés, G., Latorre, P.: A fast impulsive noise colour image filter using fuzzy metrics. Real-Time Imaging 11(5) (2005)Google Scholar
  14. 14.
    Morillas, S., Gregori, V., Peris-Fajarnés, G., Sapena, A.: Local self-adaptive fuzzy filter for impulsive noise removal in color images. Signal Processing 88(2), 390–398 (2008)MATHCrossRefGoogle Scholar
  15. 15.
    Celebi, M., Kingravi, H., Uddin, B., Asl, Y.: A fast switching filter for impulsive noise removal from color images. Journal of Imaging Science and Technology (2007)Google Scholar
  16. 16.
    Peris-Fajarnés, G., Roig, B., Vidal, A.: Rank-Ordered Differences Statistic Based Switching Vector Filter. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 74–81. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Garnett, R., Huegerich, T., Chui, C., Wenjie, H.: A universal noise removal algorithm with an impulse detector. IEEE Transactions on Image Processing 14(11), 1747–1754 (2005)CrossRefGoogle Scholar
  18. 18.
    Lukac, R.: Color image filtering by vector directional order-statistics. Pattern Recognition and Image Analysis 12, 279–285 (2002)Google Scholar
  19. 19.
    Lukac, R., Smolka, B., Plataniotis, K., Venetsanopoulos, A.: Vector sigma filters for noise detection and removal in color images. Journal of Visual Communication and Image Representation 17(1), 1–26 (2006)CrossRefGoogle Scholar
  20. 20.
    Lukac, R., Plataniotis, K.N., Venetsanopoulos, A.N., Smolka, B.: A statistically-switched adaptive vector median filter. Journal of Intelligent and Robotic Systems 42(4), 361–391 (2005)CrossRefGoogle Scholar
  21. 21.
    Deng, Y., Kenney, C., Moore, M.S., Manjunath, B.S.: Peer group filtering and perceptual color image quantization. In: Proceedings of IEEE International Symposium on Circuits and Systems, vol. 4, pp. 21–24. Springer (1999)Google Scholar
  22. 22.
    Kenney, C., Deng, Y., Manjunath, B.S., Hewer, G.: Peer group image enhancement. IEEE Trans. on Image Processing 10(2), 326–334 (2001)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Morillas, S., Gregori, V., Hervas, A.: Fuzzy peer groups for reducing mixed gaussian-impulse noise from color images. IEEE Transactions on Image Processing 18(7), 1452–1466 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ho, J.: Peer region determination based impulsive noise detection. In: Proceedings of ICASP, vol. 3, pp. 713–716 (2003)Google Scholar
  25. 25.
    Ma, Z., Wu, H.R., Qiu, B.: A window adaptive hybrid vector filter for color image restoration. In: Proceedings of ICASSP, vol. 3, pp. 205–208 (2004)Google Scholar
  26. 26.
    Morillas, S., Gregori, V., Peris-Fajarnés, G.: Isolating impulsive noise pixels in color images by peer group techniques. Computer Vision and Image Understanding 110(1), 102–116 (2008)CrossRefGoogle Scholar
  27. 27.
    Camarena, J., Gregori, V., Morillas, S., Sapena, A.: Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. Journal of Visual Communication and Image Representation 19(1), 20–29 (2008)CrossRefGoogle Scholar
  28. 28.
    Lukac, R., Smolka, B., Sharpening, K.P.: vector median filters. Signal Processing 87, 2085–2099 (2007)MATHCrossRefGoogle Scholar
  29. 29.
    Smolka, B.: Adaptive Edge Enhancing Technique of Impulsive Noise Removal in Color Digital Images. In: Schettini, R., Tominaga, S., Trémeau, A. (eds.) CCIW 2011. LNCS, vol. 6626, pp. 60–74. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Smolka, B.: Adaptive rank based impulsive noise reduction in color images. In: IEEE International Conference on Communications and Electronics (ICCE 2012), Hue, Vietnam, pp. 355–359 (2012)Google Scholar
  31. 31.
    Smolka, B.: Adaptive truncated vector median filter. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE 2012), Shanghai, China, pp. 261–266 (2011)Google Scholar
  32. 32.
    Lukac, R., Plataniotis, K.: A taxonomy of color image filtering and enhancement solutions. Advances in Imaging and Electron Physics, vol. 140, pp. 187–264. Elsevier (2006)Google Scholar
  33. 33.
    Celebi, M., Kingravi, H., Aslandogan, Y.: Nonlinear vector filtering for impulsive noise removal from color images. J. Electron. Imaging 16(3), 033008 (2007)Google Scholar
  34. 34.
    Lukac, R.: Adaptive color image filtering based on center-weighted vector directional filters. Multidimensional Systems and Signal Processing 15(2), 169–196 (2004)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Lukac, R., Smolka, B., Plataniotis, K.N., Venetsanopulos, A.N.: Selection weighted vector directional filters. Computer Vision and Image Understanding 94(1-3), 140–167 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bogdan Smolka
    • 1
  • Krystyna Malik
    • 1
  1. 1.Department of Automatic ControlSilesian University of TechnologyGliwicePoland

Personalised recommendations