Advertisement

Retinal Spectral Image Analysis Methods Using Spectral Reflectance Pattern Recognition

  • G. M. Atiqur Rahaman
  • Jussi Parkkinen
  • Markku Hauta-Kasari
  • Ole Norberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7786)

Abstract

Conventional 3-channel color images have limited information and quality dependency on parametric conditions. Hence, spectral imaging and reproduction is desired in many color applications to record and reproduce the reflectance of objects. Likewise RGB images lack sufficient information to successfully analyze diabetic retinopathy. In this case, spectral imaging may be the alternative solution. In this article, we propose a new supervised technique to detect and classify the abnormal lesions in retinal spectral reflectance images affected by diabetes. The technique employs both stochastic and deterministic spectral similarity measures to match the desired reflectance pattern. At first, it classifies a pixel as normal or abnormal depending on the probabilistic behavior of training spectra. The final decision is made evaluating the geometric similarity. We assessed several multispectral object detection methods developed for other applications. They could not proof to be the solution. The results were interpreted using receiver operating characteristics (ROC) curves analysis.

Keywords

Spectral reflectance image Diabetic retinopathy Spectral information divergence ROC curves Object detection Objects classification 

References

  1. 1.
    Kuivalainen, M.: Retinal Image Analysis using Machine Vision, Masters Thesis. Lappeenranta University of Technology (June 6, 2005) Google Scholar
  2. 2.
    von Wendt, G.: Screening for diabetic retinopathy: Aspects of photographic methods. PhD thesis, Karolinska Institutet (2005) Google Scholar
  3. 3.
    World Health Organization, Diabetes action now: An initiative of the world health organization and the international diabetes federation, nr ISBN 92 4 159151 (2004) Google Scholar
  4. 4.
    Kauppi, T.: Eye Fundus Image Analysis for Automatic Detection of Diabetic Retinopathy. PhD Thesis, Lappeenranta Technical University (2010) Google Scholar
  5. 5.
    Carinci, F., Stracci, F., Storms, F.: Diabetes. In: Major and Chronic Diseases, Report 2007 (2007)Google Scholar
  6. 6.
    Gardner, T.W., Antonetti, D.A., Barber, A.J., LaNoue, K.F., Levison, S.W.: Diabetic Retinopathy: More Than Meets the Eye. Survey of Opthalmology 47(2), 253–262 (2002)CrossRefGoogle Scholar
  7. 7.
    Diabetes mellitus, http://en.wikipedia.org/wiki/Diabetes (accessed May 7, 2011)
  8. 8.
    Abramoff, M.D., Niemeijer, M., Suttorp-Schulten, M.S., Viergever, M.A.: Evaluation of a system for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 31(2), 193–197 (2008)CrossRefGoogle Scholar
  9. 9.
    Rahaman, G.M.A., Ahsan Rajon, A.H.M., Rahman, A.: Effective Approach for Automatic Detection of Vessels, Optic Disk and Macula: Retinal Spectral Image Analysis Perspective. International Journal of Applied Research in Computer Science and Information Technology (IJAR-CSIT), 25–37 (2012)Google Scholar
  10. 10.
    Soliz, P., Truitt, P., Nemeth, S.: Spectrally-Based Fundus Imaging: Implications for Image Enhancement And Diagnosis of Retinal Diseases. In: Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, Novemer 4-7, vol. 2, pp. 1268–1272. IEEE Explore (2001)Google Scholar
  11. 11.
    Delori, F., Pflibsen, K.: Spectral reflectance of the human ocular fundus. Applied Optics 28(6), 1061–1077 (1989)CrossRefGoogle Scholar
  12. 12.
    Styles, I., Calcagni, A., Claridge, E., Orihuela-Espina, F., Gibson, J.: Quantitative analysis of multi-spectral fundus images. Medical Image Analysis 10(4), 578–597 (2006)CrossRefGoogle Scholar
  13. 13.
    Kilbride, P.E., Keehan, K.M.: Visual pigments in the human macula assessed by imaging fundus reflectometry. Applied Optics 29(10), 1427–1435 (1990)CrossRefGoogle Scholar
  14. 14.
    Falt, P., Hiltunen, J., Hauta-Kasari, M., Sorri, I., Kalesnykiene, V., Uusitalo, H.: Extending Diabetic Retinopathy Imaging from Color to Spectra. In: Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2009), Oslo, Norway (2009)Google Scholar
  15. 15.
    Chang, C.-I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification, 1st edn. Springer (2003)Google Scholar
  16. 16.
    Eye Anatomy and Function, http://faculty.washington.edu/chudler/eyetr.html (accessed May 11, 2011)
  17. 17.
  18. 18.
    Diabetic Retinopathy http://en.wikipedia.org/wiki/Diabetic_retinopathy (accessed May 7, 2011)
  19. 19.
    Wang, C.-M., Chen, C.-C., Chung, N., Yang, C., Chung, P.-C., Yang, C.-W., Chang, C.-I.: Detection of Spectral Signatures in Multispectral MR Images for Classification. IEEE Transactions on Medical Imaging 22(1), 50–61 (2003)CrossRefGoogle Scholar
  20. 20.
    Lin, G.-C., Wang, W.-J., Wang, C.-M.: Feature Selection Algorithm for Classification of Multispectral MR Images Using Constrained Energy Minimization. In: 10th International Conference on Hybrid Intelligent Systems, Atlanta, GA, August 23-25, pp. 43–46. IEEE Xplore (2010)Google Scholar
  21. 21.
    Harsanyi, J., Chang, C.-I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing 32(4), 779–785 (1994)CrossRefGoogle Scholar
  22. 22.
    Wang, C., Yang, S., Chung, P., Chang, C., Lo, C., Chen, C., Yang, C., Wen, C.: Orthogonal Subspace Projection-based Approaches to Classification of MR image Sequence. Computerized Medical Imaging and Graphics 25(6), 465–476 (2001)CrossRefGoogle Scholar
  23. 23.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2009)CrossRefGoogle Scholar
  24. 24.
    IMAGERET, http://www2.it.lut.fi/project/imageret/ (accessed June 08, 2011)
  25. 25.
    Chang, C.-C., Lin, C.-J.: LIBSVM : a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  26. 26.
    Cardillo, G.: Clinical test performance: the performance of a clinical test based on the Bayes theorem, http://www.mathworks.com/matlabcentral/fileexchange/2705-clinical-test-performance (accessed May 11, 2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. M. Atiqur Rahaman
    • 1
  • Jussi Parkkinen
    • 2
  • Markku Hauta-Kasari
    • 3
  • Ole Norberg
    • 1
  1. 1.DPC, Department of Applied Science and DesignMid Sweden UniversitySweden
  2. 2.School of EngineeringMonash UniversityMalaysia
  3. 3.SIB Labs, School of ComputingUniversity of Eastern FinlandFinland

Personalised recommendations