Skip to main content

Minimum Clique Cover in Claw-Free Perfect Graphs and the Weak Edmonds-Johnson Property

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

Abstract

We give new algorithms for the minimum (weighted) clique cover in a claw-free perfect graph G, improving the complexity from O(|V(G)|5) to O(|V(G)|3). The new algorithms build upon neat reformulations of the problem: it basically reduces either to solving a 2-SAT instance (in the unweighted case) or to testing if a polyhedra associated with the edge-vertex incidence matrix of a bidirected graph has an integer solution (in the weighted case). The latter question was elegantly answered using neat polyhedral arguments by Schrijver in 1994. We give an alternative approach to this question combining pure combinatorial arguments (using techniques from 2-SAT and shortest paths) with polyhedral ones. Our approach is inspired by an algorithm from the Constraint Logic Programming community and we give as a side benefit a formal proof that the corresponding algorithm is correct (apparently answering an open question in this community). Interestingly, the systems we study have properties closely connected with the so-called Edmonds-Johnson property and we study some interesting related questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagnara, R., Hill, P.M., Zaffanella, E.: An Improved Tight Closure Algorithm for Integer Octagonal Constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 8–21. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Berge, C.: Graphs and Hypergraphs. Dunod, Paris (1973)

    MATH  Google Scholar 

  4. Bonomo, F., Oriolo, G., Snels, C.: Minimum Weighted Clique Cover on Strip-Composed Perfect Graphs. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 22–33. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Chvátal, V.: On certain polytopes associated with graphs. J. Combin. Theory, Ser. B 18(2), 138–154 (1975)

    Article  MATH  Google Scholar 

  6. Chvátal, V., Sbihi, N.: Recognizing claw-free perfect graphs. J. Combin. Theory, Ser. B 44, 154–176 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edmonds, J., Johnson, E.: Matching: a well-solved class of integer linear programs. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 89–92. Gordon and Breach, New York (1970)

    Google Scholar 

  8. Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman. Math. Program. 5, 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: Randall, D. (ed.) Proc. 22nd SODA, San Francisco, CA, pp. 630–646 (2011)

    Google Scholar 

  10. Fulkerson, D.: On the perfect graph theorem. In: Hu, T., Robinson, S. (eds.) Mathematical Programming, pp. 69–76. Academic Press, New York (1973)

    Google Scholar 

  11. Gerards, A., Schrijver, A.: Matrices with the Edmonds-Johnson property. Combinatorica 6(4), 365–379 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  13. Harvey, W., Stuckey, P.: A unit two variable per inequality integer constraint solver for constraint logic programming. In: The 20th Australasian Computer Science Conference, Sydney, Australia. Australian Computer Science Communications, pp. 102–111 (1997)

    Google Scholar 

  14. Hsu, W., Nemhauser, G.: Algorithms for minimum covering by cliques and maximum clique in claw-free perfect graphs. Discrete Math. 37, 181–191 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsu, W., Nemhauser, G.: A polynomial algorithm for the minimum weighted clique cover problem on claw-free perfect graphs. Discrete Math. 38(1), 65–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond Finite Domains. In: PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2011)

    MATH  Google Scholar 

  18. Lahiri, S.K., Musuvathi, M.: An Efficient Decision Procedure for UTVPI Constraints. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 168–183. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Maffray, F., Reed, B.: A description of claw-free perfect graphs. J. Combin. Theory, Ser. B 75(1), 134–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Padberg, M.: Perfect zero-one matrices. Math. Program. 6, 180–196 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peis, B.: Structure Analysis of Some Generalizations of Matchings and Matroids under Algorithmic Aspects. PhD thesis, Universität zu Köln (2007)

    Google Scholar 

  22. Schrijver, A.: Disjoint homotopic paths and trees in a planar graph. Discrete Comput. Geom. 6(1), 527–574 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency (3 volumes). Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  24. Schutt, A., Stuckey, P.: Incremental satisfiability and implication for UTVPI constraints. INFORMS J. Comput. 22(4), 514–527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seshia, S., Subramani, K., Bryant, R.: On solving Boolean combinations of UTVPI constraints. J. Satisf. Boolean Model. Comput. 3, 67–90 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Whitesides, S.: A method for solving certain graph recognition and optimization problems, with applications to perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs, North-Holland. North-Holland Mathematics Studies, vol. 88, pp. 281–297 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonomo, F., Oriolo, G., Snels, C., Stauffer, G. (2013). Minimum Clique Cover in Claw-Free Perfect Graphs and the Weak Edmonds-Johnson Property. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics